

OpenWave: U.S.-Brazil 100G Experimental Alien Wave



#### 13<sup>th</sup> Annual ON\*VECTOR Photonics Workshop March 5-6, 2014 CallT2, UCSD

Julio Ibarra, FIU, PI Heidi Alvarez, FIU, Co-PI Chip Cox, FIU, Co-PI Louis Fox, CENIC, Co-PI







- OpenWave is a project (award# 1341895) under NSF IRNC ProNet AmLight award for U.S.-Latin America connectivity
- OpenWave will deploy an experimental 100G alien wave between the U.S. and Brazil
- OpenWave is an experiment consisting of 2 major goals:
  - Understand how to deploy a 100G trans-oceanic alien wave on a highly constrained operational undersea cable system
  - Understand how to operate a 100G alien wave with a total span of approximately 10,000km
- **Broader Impacts:** 
  - Impact is the potential of introducing a novel approach for upgrading production undersea optical fiber systems
  - Facilitating academic access to submarine spectrum
  - Brings a new resource to science and education, preparing for future science demands, such as the Large Synoptic Survey Telescope (LSST), which is expected to push to the limits of 100Gb/s network connections, bridging the southern and northern hemispheres. 2



# **OpenWave Project Partners**



- NSF and the IRNC program
- Florida International University via the AmLight Project
- Brazil via the ANSP and RNP
- PadTec, optical equipment manufacturer in Brazil
- Latin American Nautilus, submarine cable system operator
- Florida LambdaRail (FLR)
- Internet2

## **OpenWave Challenges**

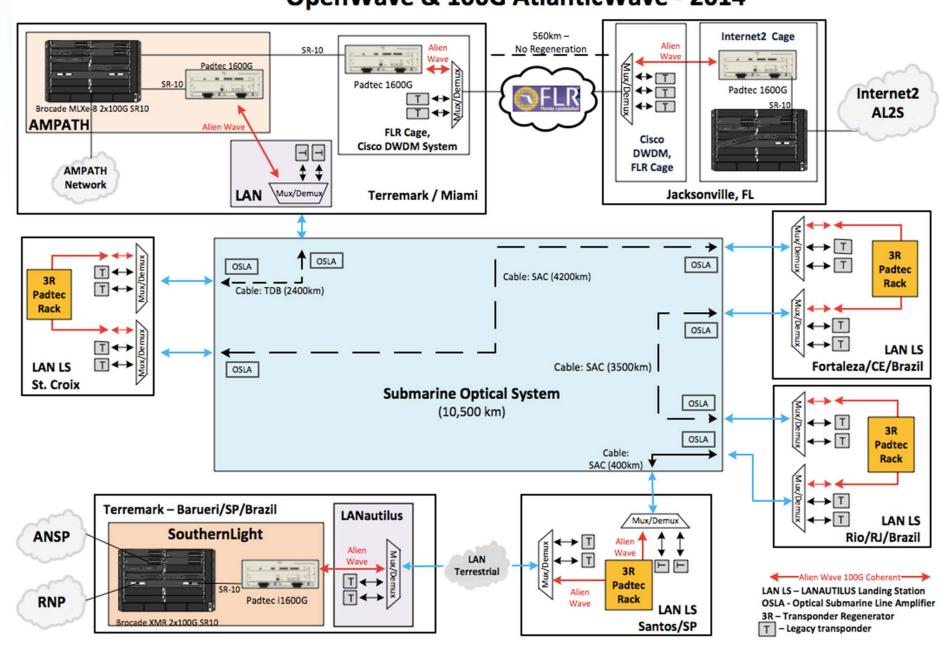
- 100G alien wave technology has not been field tested in this type of environment
- Complexity of LAN's undersea cable system
  - Real-world submarine cable system that is 14+ years old with many amplifiers
  - Complex overlays using multiple digital modulation schemes
    - 10G waves with Non-return-to-zero (NRZ) modulation at 100GHz, 50GHz and 33GHz spacing
    - 40G & 100G waves in an overlay using BP & QPSK modulation at 50GHz spacing
  - Overcoming non-linear phase noise effects
    - Optical Signal to Noise Ratio (OSNR), Bit Error Rate (BER), Chromatic Dispersion, etc.

# **OpenWave and AmLight Topology**

- 4 100G segments (future):
  - St. Croix (STX)-Fortaleza
    4,200km
  - Fortaleza-Rio, 3,500km
  - Rio-Santos, 400km
  - Miami-STX, 2,400km
- ANSP: 2x 10G links S Paulo – Miami
  - (W) via Santiago (LAN)
  - (E) direct (Telefonica)
- RNP: 2x 10G links
  S Paulo Miami
  - (W) direct (Telefonica)
  - (E) via Rio de Janeiro &
    Fortaleza (LAN)
    (+ rodundant torrostrial lin
    - (+ redundant terrestrial links)




## **OpenWave System Characteristics**


- Four spans in the path; longest measured at 4,200km
- 100G Alien Wave will be deployed using Padtec's devices with LAN's hybrid Ciena SLTE and Alcatel repeatered line
  - New Alien Wave deployment in SAC cable
  - Differential Quadrature Phase Shift Keying (DQPSK)
  - Coherent Detection technology
- Use of a 50GHz channel, plus some guard channels of 50Ghz
  - Number of guard channels depends on results of simulation and lab tests
  - Prevents Non Linear Effects on production waves

#### Methodology

- Separate the Miami São Paulo path into 4 spans:
  - a. Miami to St. Croix (2,400km)
  - b. St. Croix to Fortaleza/BR (4,200km)
  - c. Fortaleza to Rio de Janeiro (3,500km)
  - d. Rio de Janeiro to Santos (400km)
- Modeling span (b): (approx. 30 days)
  - (b) is the longest span
- Simulation of (b): (approx. 30-45 days)
- Laboratory tests of (b): (approx. 30 days)
- Repeat for (a), (c), (d) and (e) (up to 15 days each)
- Evaluation of the results by all partners
- Deploy the 100G in the SAC cable



# OpenWave & 100G AtlanticWave - 2014



### **Critical Success Factors**

- Overcoming non-linear phase noise effects
  - Bit Error Rate (BER)
  - Sensitivity to Optical Signal-to-Noise Ratio (OSNR)
  - Chromatic Dispersion
- Q-value performance margin
  - How well the wave is performing in relation to BER and OSNR
  - Must account for aging and faults on the fiber
- St. Croix Fortaleza span is most challenging
  - 4,200km
  - Experiment hinges on success with this span

# Timeline

- Padtec has provided LAN with specs of their Coherent technology
- LAN has provided Padtec with characteristics of its submarine system
- Simulation of the wave
  - Results estimated by end of April 2014
- Laboratory tests
  - Results estimated by end of June 2014
- Documentation Analysis and Approval
  - Completion estimated by mid August 2014
- Field Trial
  - Projected for August November 2014

## **Thank You!**

- OpenWave, AmLight, OSDC-PIRE, CC-NIE, AMPATH, AtlanticWave infrastructure, science application support, education, outreach and community building efforts are made possible by funding and support from:
  - National Science Foundation (NSF) awards ACI-0963053, ACI-1140833, ACI-1246185, ACI-1341895, ACI-1357928, OISE-1129076
  - FAPESP, ANSP grant no. 2008/52885-8
  - Rede Nacional de Ensino e Pesquisa (RNP)
  - Florida International University
  - Latin American Research and Education community
  - The many national and international collaborators who support our efforts