

Challenges When Designing A Distributed SDX

Sean Donovan, Russ Clark Georgia Tech

Jeronimo Bezerra Florida International University

1

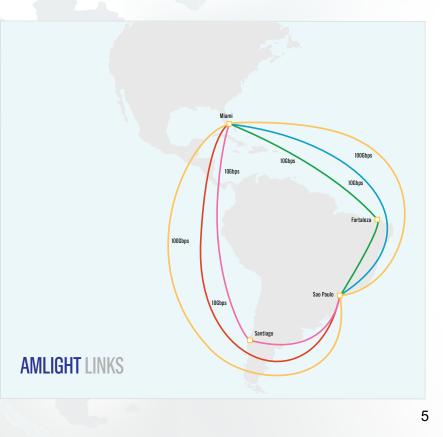
NSF International Research Network Connections (IRNC) Grant #ACI-1341024

Julio Ibarra, Heidi Morgan

Joaquin Chung, Cas D'Angelo, Ankita Lamba, John Skandalakis

Large Synoptic Survey Telescope (LSST)

- High in the mountains in northern Chile
- Engineering First Light in 2019, Science First Light in 2021


Source: https://www.lsst.org/gallery/telescope-rendering-2013

Huge Bandwidth Requirements

- 8.4 meter primary mirror with 3.2 Gigapixel sensor
- 12.7 GB image taken every 17 seconds
- Needs to be sent from Chile to NCSA/Illinois in 5 seconds
- Peak burst bandwidth of 65 Gbps
- In use all night long

New Connection

- Amlight is installing a new 100Gbps network connection between North and South America
- AtlanticWave/SDX sonnects Atlanta, Miami, and São Paulo over the AMLIGHT network
- Opportunity to innovate with the network

Agenda

- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status

Agenda

- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status

Our definition of SDX

Traditional IXP 26 IXP + SDN Customer 1 1 - Not just L2 like an IXP L2 Switch 54 - Where participants can write rules Customer 3 Multi-site IXP AMS-IX has 10 sites in and around Amsterdam SDX Same administrative domain SDN Switch Customer 1 New functionality enabled by SDN # at the IXP Customer 3 Not bound by BGP restrictions Application-specific peering SDN Controller

٠

Customer 2

36

Customer 4

Customer 2

Customer 4

Current SDX Deployments

- Cardigan Wellington Internet Exchange and REANNZ
 - Very, very early implementation
 - In early 2014, was deployed for 9 months with only 1134 flows
 - Rather traditional IXP
- Maryland/WIX
 - Controller lives "above" Oscars
 - Adding compute to the mix
- PacificWave-SDX
 - This is the most like AtlanticWave/SDX, distributed on the west coast of the US
 - Also a distributed exchange between Seattle, Sunnyvale, CA, and Los Angeles, CA
 - SDX in parallel with their traditional fabric

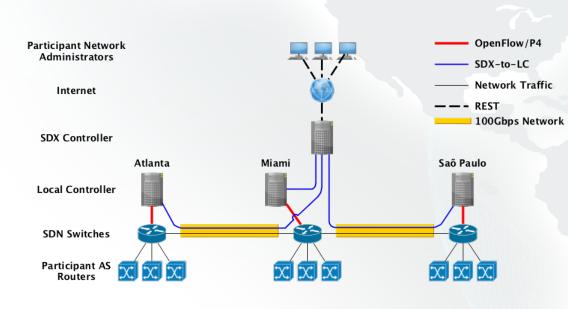
Current Examples of SDX Research

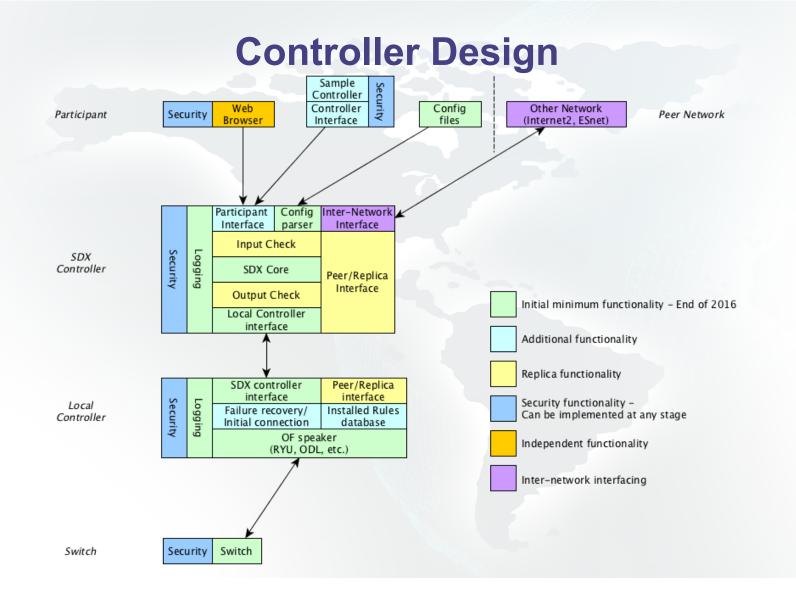
- Gupta et al., SIGCOMM 2014 Initial work, where our definition comes from
- Gupta et al., NSDI 2016 Optimization work, to allow for scalability
- GENI SDX Early work at deploying an SDX using GENI project infrastructure, still ongoing
- Work at Starlight Working on evaluating various SDX design
- SDX taxonomy in Chung et al., SoutheastCon 2016.

AtlanticWave/SDX

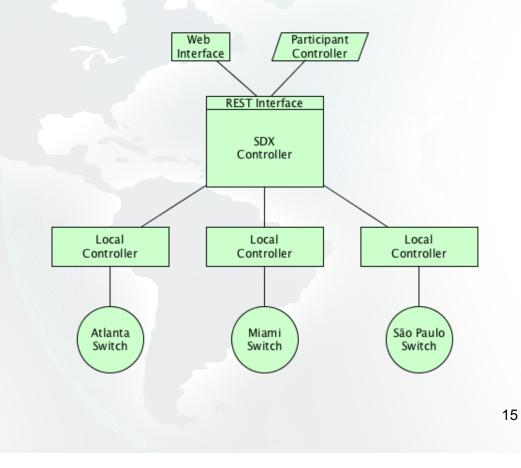
- Another SDX, but with a twist
 - Multiple, international locations
 - Multiple administrative domains
 - REN functionality in addition to SDX functionality
- · Lots of telescope data
 - But what about during the day?
 - Have opportunity to do something more interesting

Agenda


- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status



Overview

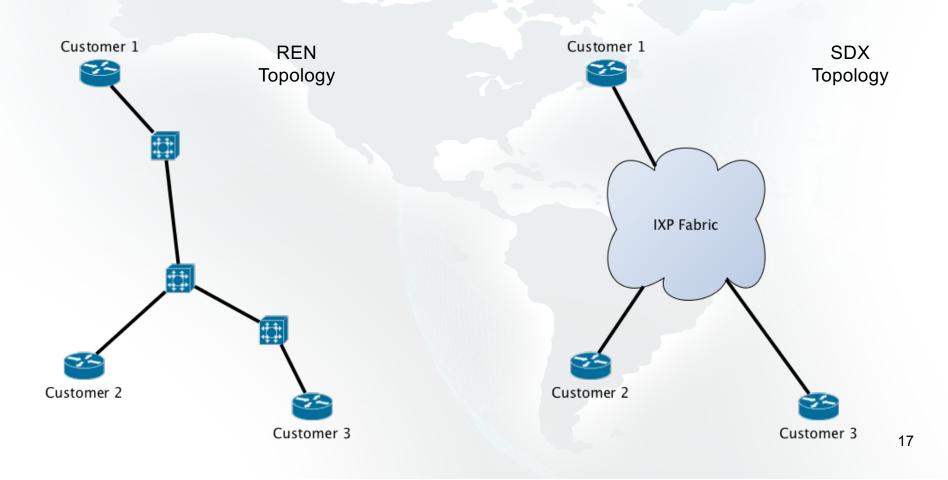


- Initially, three locations to cover
- Thousands of KM of fiber between each location
- Split controller design
 - Central controller for interacting with users
 - Local controllers at each location

Interfaces

- REST API
- SDX-to-LC
- LC-to-Switch

Agenda


- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status

Functionality

Functionality

- Why not both?
- REN functionality will solve initial use case easily

 Reserving bandwidth for specific durations
- SDX functionality can be used for unused bandwidth
 - Useful for impromptu transfers

Agenda

- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status

Challenges

- Like any system, it's complicated
 But there are some rather unique challenges
- Some solved, but lots of open questions
 We'd like operator and user help with some of these challenges
- What would you want?

Hardware

- We have some specific requirements
 - Multiple Table support
 - To reduce rule sizes dramatically
 - 100Gbps
 - Based on the data rates that we expect
 - Support for most, if not all of OpenFlow 1.3
 - Features in OpenFlow 1.3 that are useful
 - OF Groups, for instance

Need for Multiple Rule Tables

- Each participant has two types of rules
 - Inbound rules for packets coming into the participant's network
 - 0.0.0/24 put on VLAN 3, forward to network
 - 128.0.0.0/24 put on VLAN 4, forward to network
 - Outbound rules for packets leaving participant's network
 - Strip VLAN tag, forward to neighbor

Cross Multiplication

	A-in	B-in	C-in
A-out			
B-out			
C-out			

Cross Multiplication

	A-in	B-in	C-in
A-out	A-in*A-out	B-in*A-out	C-in*A-out
B-out	A-in*B-out	B-in*B-out	C-in*B-out
C-out	A-in*C-out	B-in*C-out	C-in*C-out

- O(N²) sets of rules
- Some optimizations are possible
 - The diagonal can be eliminated
 - Gupta, et. al., 2014 discusses other optimizations

Cross Multiplication

	A-in	B-in	C-in
A-out		B-in*A-out	C-in*A-out
B-out	A-in*B-out		C-in*B-out
C-out	A-in*C-out	B-in*C-out	

- O(N²) sets of rules
- Some optimizations are possible
 - The diagonal can be eliminated
 - Gupta, et. al., 2014 discusses other optimizations

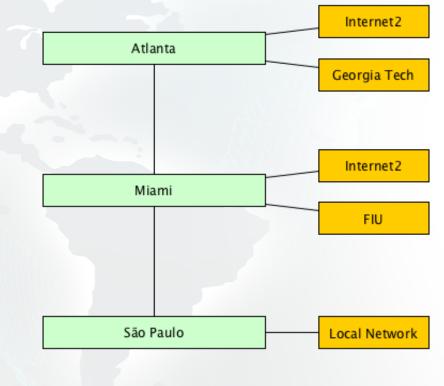

Multiple tables are better

Table 1	Table 2
A-out	A-in
B-out	B-in
C-out	C-in

- With multiple tables, we can pipeline the outbound and inbound rules
- O(2N) sets of rules
 Much better than O(N²)
- Think of a dozen participants:
 ~144 sets of rules vs ~24 sets
- Much simpler to implement

100Gbps OpenFlow Equipment is Hard to Find

- Only a few manufacturers have OF 100Gbps gear and big interface buffers
- A lot only have 1 or 2 ports, need 3 or 4, depending on location

OpenFlow 1.3 (non) Support

- Many vendors claim 1.3 support
 - Often single table
 - Only rules X and Y, but not Z
 - Limited number of rules
 - TCAM limitations
- Study about support being overblown
 - Di Lallo et al., IEEE/IFIP NOMS 2016



Fig. 5. Percentage of passed OF 1.3 Ryu tests for packets carrying specific protocols.

100Gbps + OpenFlow 1.3

- Rather hard to find!
- Equipment's now trickling out

http://noviflow.com/products/noviswitch/ http://www8.hp.com/us/en/products/networking-switches/product-detail.html?oid=4177453 http://www.corsa.com/products/dp6440/ http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-2x100gbe-cfp2ds.pdf

Abstractions

- What functionality do people need?
 - Point-to-point paths?
 - Point-to-multipoint?
 - Arbitrary routing?
- What should the API look like?
 - REST good enough?
 - Web-based interface?

- Who should it be tailored to?
 - Network admins?
 - Domain scientists?
 - General users?

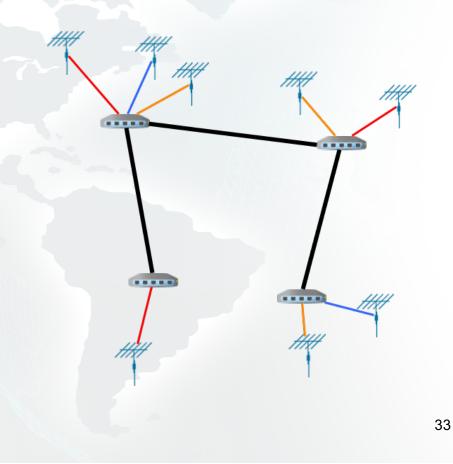
APIs for Different Audiences

Administrators

```
{"l2tunnel": {
    "starttime": "2016-10-12T23:20:50",
    "endtime": "2016-10-13T23:20:50",
    "srcswitch": "atl-switch",
    "dstswitch": "mia-switch",
    "dstswitch": "mia-switch",
    "srcport": 5,
    "dstport": 7,
    "srcvlan": 1492,
    "dstvlan": 1789,
    "bandwidth": 1}}
```

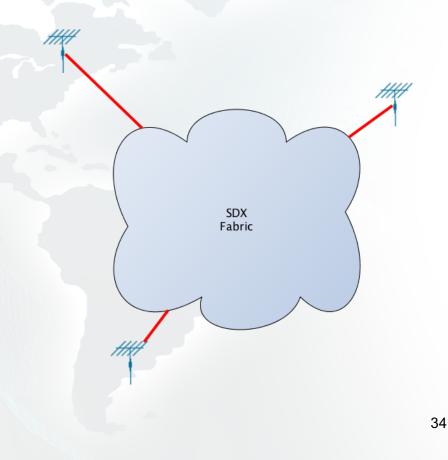
```
    Domain scientists
```

```
{"dtntunnel":{
```


```
"starttime":"2016-10-27T17:00:00",
"endtime":"2016-10-30T23:59:59",
"srcdtn":"gt-dtn",
"dstdtn":"fiu-dtn",
"bandwidth":1}}
```

What Functionality Would be Useful?

- NSI-like interface planned
 - Partially working now
 - Timers/Bandwidth aren't yet implemented
 - Come see our demo at GLIF!
 - With inter-network NSI integration in the future
- SDX rules based on DNS
 - Based on NetAssay
 - match(domain='example.com')
- Any suggestions?

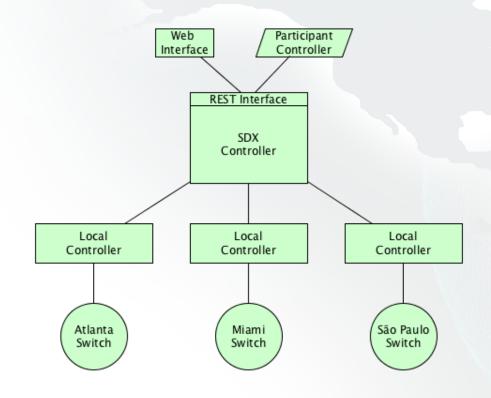

Deployment Outside of AtlanticWave/SDX

- Example deployment
 - In a city with a distributed SDX, like AMS-IX
 - Mobile phone backbone for multiple carriers
- Does this change what sorts of abstractions someone would want?

Deployment Outside of AtlanticWave/SDX

- Example deployment
 - In a city with a distributed SDX, like AMS-IX
 - Mobile phone backbone for multiple carriers
- Does this change what sorts of abstractions someone would want?

Do Administrators Care about Functionality Beyond BGP?


- Application-based peering
 - YouTube through Level3
 - Netflix through Cogent
 - Everything else through AT&T
 - Impossible with BGP
- Shared services at the SDX
 - Shared IDS for small businesses connection to the SDX
 - Web caching at the SDX

• Would administrators be interested in this type of functionality?

Security

- SDN and Security isn't discussed nearly enough
 - Most academic work glosses over security aspects of what they developed
 - New attacks are possible due to the design change over traditional networking
- This is being deployed
 - So we care a lot about security

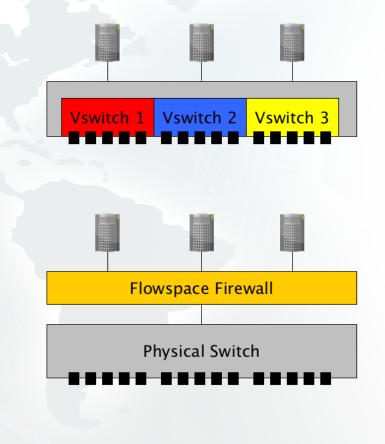
Security Issues in AtlanticWave/SDX Design

- Information leakage
 - Rules/data leaking to unauthorized users
- DoS attacks
 - REST API is susceptible
 - In-band SDX-to-LC should mitigate
- Policy overlap
 - New user policies must not violate other user's policies

Authentication

- User authentication
 - TLS certificate authentication
 - Would an SSH tunnel with a certificate be enough?
- Local controller and SDX controller
 - Prevent unauthorized rules coming from a fake SDX controller
 - Prevent snooping from a fake local controller
 - Bi-directional TLS authentication with certificates

Authorization


	Admins	Domain Scientists	Data Agent	Research Assistant	 What's the correct level of granularity in authorization?
GT					 Roles Organizations
FIU					 What Actions should be authorized?
NCSA					 At what granularity should actions be authorized?
UofA					 Future project

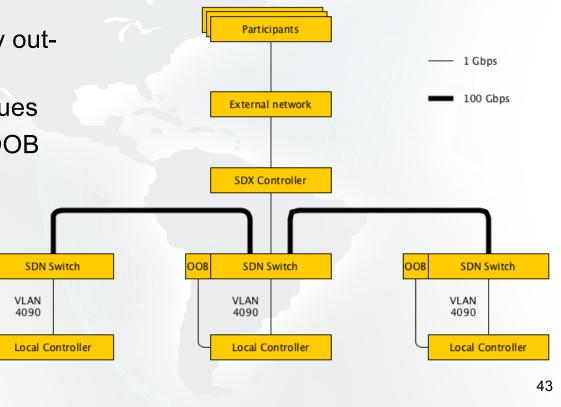
Actions requiring authorization

- Installing rules
 - Per port
 - Per switch
- Removing rules
 - Own rules
 - Same org. rules
- Get Statistics
 - To authorize automated collection methods
- View Rules
 - Per user
 - Per organization
 - Per switch

Federation

- Multiple Controllers with a Single Switch
 - Hardware virtualization
 - Per port, typically
 - New switches allow for per VLAN
 - Software Hypervisor
 - Use something like FlowSpace
 Firewall
 - Below the LC, for AtlanticWave/SDX
 - FSF does not support OF1.3

Federation


- Integrating other Networks
 - Integration with NSI
 - There are a number of NSI speakers that could be used to integrate with AtlanticWave/SDX
 - Shibboleth connectivity
 - Difficulty of integration is not yet known
 - Would certificate authentication be better?

Management

- In-band management traffic
- Known delays vs. commodity outof-band connection
- Helps with some security issues
- Switches still controlled on OOB port

OOB

LC bootstraps switches

Management

- Failover
 - Distance = Latency
 - Latency = Problems
 - AtlanticWave/SDX is not a physically small network
 - Should there be more autonomy at the LC for failover?

	Atlanta	Miami	São Paulo
Atlanta	-	13ms	119ms
Miami	81 MB	-	106ms
São Paulo	743 MB	662 MB	-

https://wondernetwork.com/pings, FIU/AmLight

Sustainability

- Currently supported by NSF Grant #ACI-1341024 2015-2020
- How to make this self sufficient/sustainable?
- What's a good business model?
- Other research networks are facing the same question (e.g., GENI)

Agenda

- Introduction
- Design Overview
- Functionality
- Challenges
 - Hardware
 - Abstractions
 - Security
 - Federation
 - Management
 - Sustainability
- Status

Current Status

- Focusing on NSI-like functionality right now
 Default IXP behavior will follow
- Initial version of the controller is built
 - Has limitations, but being continuously developed
- Prototype Web Interface
 - Limited to adding rules
- Configuration files for static configurations
 - Users and topology are static at startup

Web Interface

	ň	Topology	Requests	About Us		
<						
Ankita Lamba Graduate Security Researcher						John Skandalakis Graduate Student
Login Form Please contact the administrator if you c sdonovan	do not alre		iccount	Contac Georgia Institut Atlanta, GA 3033	e of Technol	ogy Florida International University Miami, FL 33199
Submit				Conne	ct witl	h us
				f Facebo	ook	in Linkedin
k				8 ⁺ Google	Plus	Twitter

Web	Interface

	Request a Pipe	9
	sers can request for a pipe based on their requi	rements and role
	Network Engineers Scientists	
Enter the start date:	Enter the desired bandwidth:	Enter the source VLAN:
2016-10-10	1	2387
Enter the start time:	Enter the physical port number at source:	Enter the destination VLAN:
00:00	1	5478
	Enter the physical port number at destination:	Select source:
Enter the end date:		
Enter the end date:	2	Miami
	2	Miami Select destination:
2016-10-17	2	

Meet the Team

Web Interface

🗲) 🛈 | **127.0.0.1**:5000/pipe

```
{
    "l2tunnel": {
        "dstswitch": "atl-switch",
        "bandwidth": "1",
        "srcswitch": "mia-switch",
        "srcvlan": "2387",
        "starttime": "2016-10-10T00:00:00",
        "dstvlan": "5478",
        "endtime": "2016-10-17T23:59:00",
        "srcport": "1",
        "dstport": "2"
    }
}
```

Timeline

- Public Github accessible after this meeting

 https://github.com/sdonovan1985/atlanticwave-proto
- October for NSI/AL2S-like functionality completed

 Missing timers and bandwidth reservation as of today
- October for DTN-to-DTN for domain scientists
- November for running on hardware switches
- December for initial SDX functionality

Demo at GLIF

Come to demo night at GLIF September 29, 6pm

Thanks!

http://www.atlanticwave-sdx.net/ Sean Donovan sdonovan@gatech.edu Russ Clark russ.clark@gatech.edu Jeronimo Bezerra jbezerra@fiu.edu

References

- Stringer, Jonathan Philip, et al. "Cardigan: Deploying a distributed routing fabric." *Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking*. ACM, 2013.
- Stringer, Jonathan, et al. "Cardigan: SDN distributed routing fabric going live at an Internet exchange." 2014 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2014.
- Gupta, Arpit, et al. "SDX: a software defined internet exchange." ACM SIGCOMM Computer Communication Review 44.4 (2015): 551-562.
- Gupta, Arpit, et al. "An industrial-scale software defined internet exchange point." 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). 2016.
- Chung, Joaquin, Henry Owen, and Russell Clark. "SDX architectures: A qualitative analysis." *SoutheastCon 2016*. IEEE, 2016.
- di Lallo, Roberto, et al. "On the practical applicability of SDN research." NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016.