

Design and Demo of AtlanticWave/SDX

Sean Donovan, Russ Clark Georgia Tech

Jeronimo Bezerra, Julio Ibarra Florida International University

NSF International Research Network Connections (IRNC) Grant #ACI-1341024

Heidi Morgan

Joaquin Chung, Cas D'Angelo, Ankita Lamba, John Skandalakis

Agenda

- Introduction
- Controller Design Overview
- Controller Features
- Demo 1 AtlanticWave/SDX
- Demo 2 RNP Network

Large Synoptic Survey Telescope (LSST)

- High in the mountains in northern Chile
- Engineering First Light in 2019, Science First Light in 2021

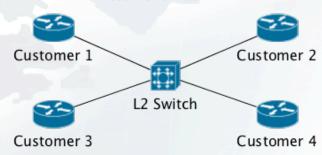
Source: https://www.lsst.org/gallery/telescope-rendering-2013

Huge Bandwidth Requirements

- 8.4 meter primary mirror with 3.2 Gigapixel sensor
- 12.7 GB image taken every 17 seconds
- Needs to be sent from Chile to NCSA/Illinois in 5 seconds
- Peak burst bandwidth of 65 Gbps
- In use all night long

New Connection

- Amlight is commissioning a new 100Gbps network connection between North and South America
- AtlanticWave/SDX sonnects
 Atlanta, Miami, and São Paulo
 over the AMLIGHT network
- Opportunity to innovate with the network

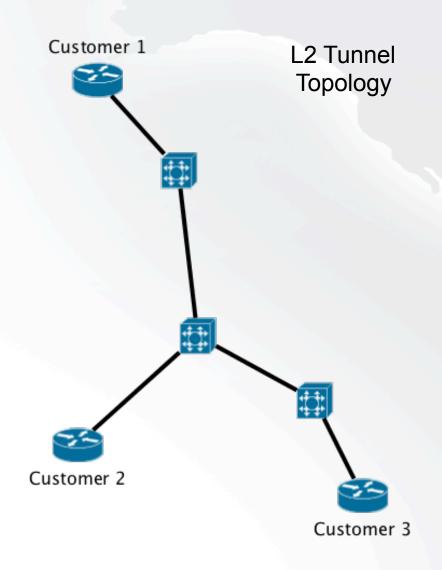

AtlanticWave/SDX

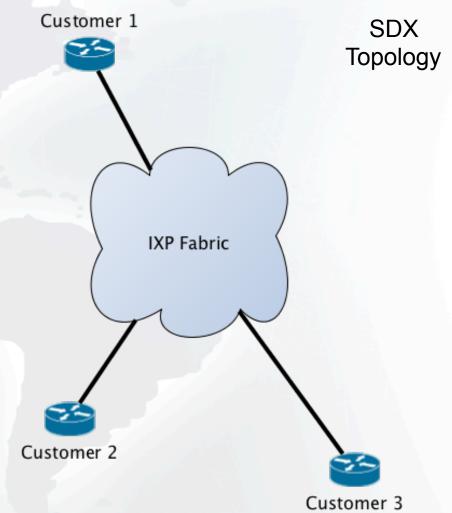
- SDX, but with a twist
 - Multiple, international locations
 - Multiple administrative domains
 - L2 tunneling functionality in addition to SDX functionality
- Lots of telescope data
 - But what about during the day?
 - Have opportunity to do something more interesting

What is an SDX?

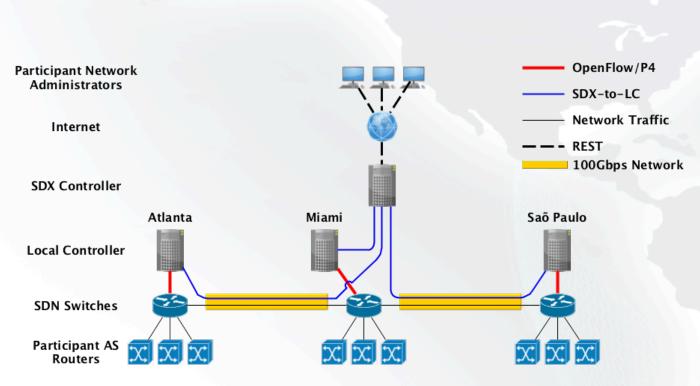
- IXP + SDN
 - Not just L2 like an IXP
 - Where participants can write rules
- Multi-site IXP
 - AMS-IX has 10 sites in and around Amsterdam
 - Same administrative domain
- New functionality enabled by SDN at the IXP
 - Not bound by BGP restrictions
 - Application-specific peering

Traditional IXP

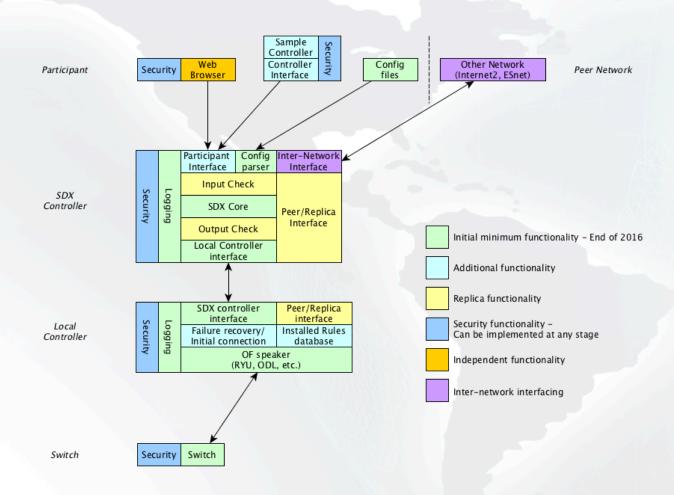




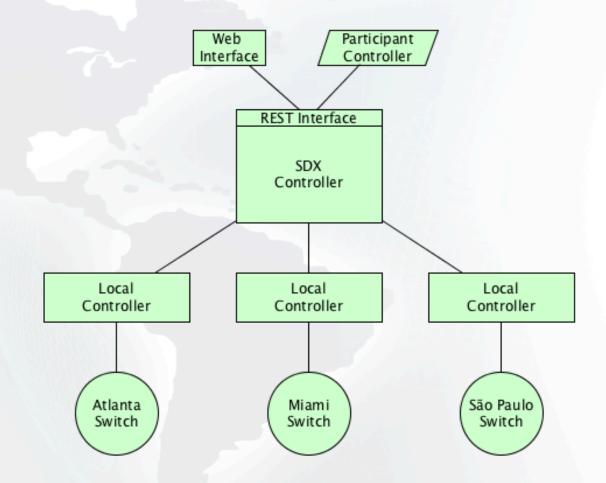
AtlanticWave/SDX


- Two main types of functions we care about
 - L2 Tunnel functionality
 - AL2S, OSCARS, NSI
 - SDX Functionality
 - Useful rules at an IXP, steering traffic
- Why not both?

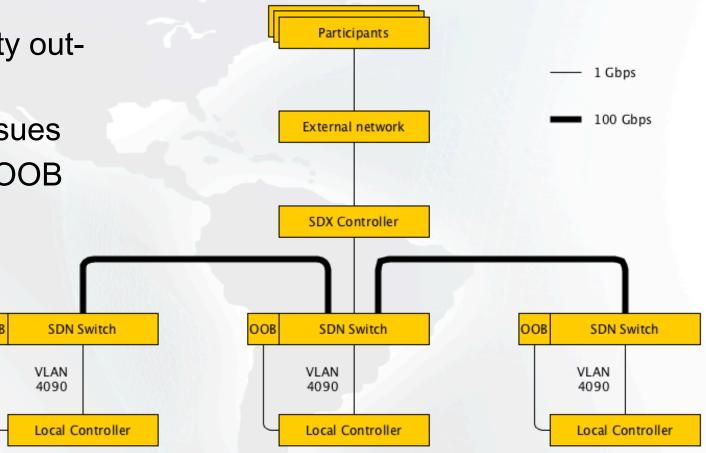
Different Views For Different Functions



Design Overview


- Initially, three locations to cover
- Thousands of KM of fiber between each location
- Split controller design
 - Central controller for interacting with users
 - Local controllers at each location

Split Controller Design


Interfaces

- REST API
- SDX-to-LC
- LC-to-Switch

Management

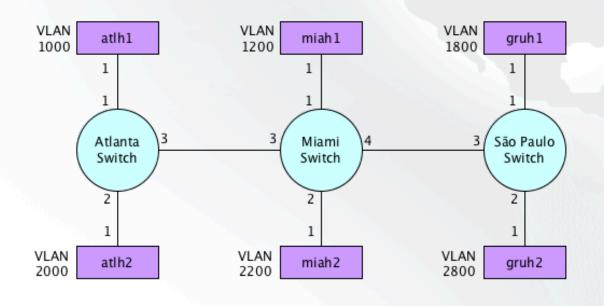
- In-band management traffic
- Known delays vs. commodity outof-band connection
- Helps with some security issues
- Switches still controlled on OOB port
- LC bootstraps switches

Multiple Rule Tables

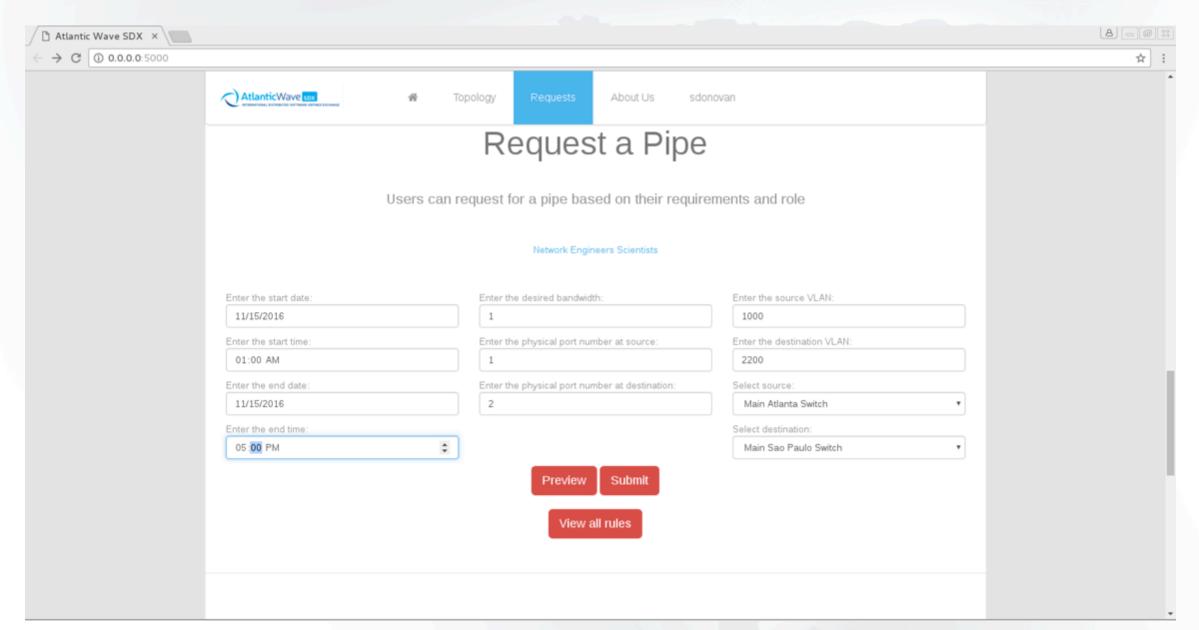
- L2 Tunneling
 - Large amount of traffic will likely be moved through L2 tunnels
- Each participant has two types of SDX rules
 - Inbound rules for packets coming into the participant's network
 - 0.0.0.0/24 put on VLAN 3, forward to network
 - 128.0.0.0/24 put on VLAN 4, forward to network
 - Outbound rules for packets leaving participant's network
 - Strip VLAN tag, forward to neighbor
- Learning switch as backup
 - When all else fails...

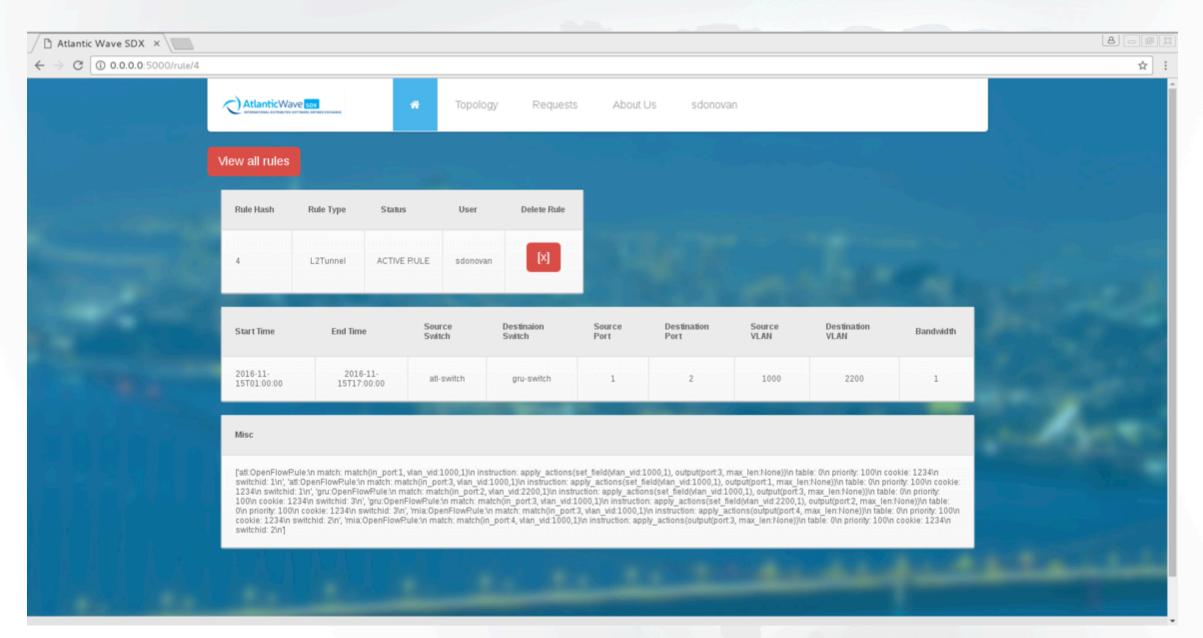
Functionality

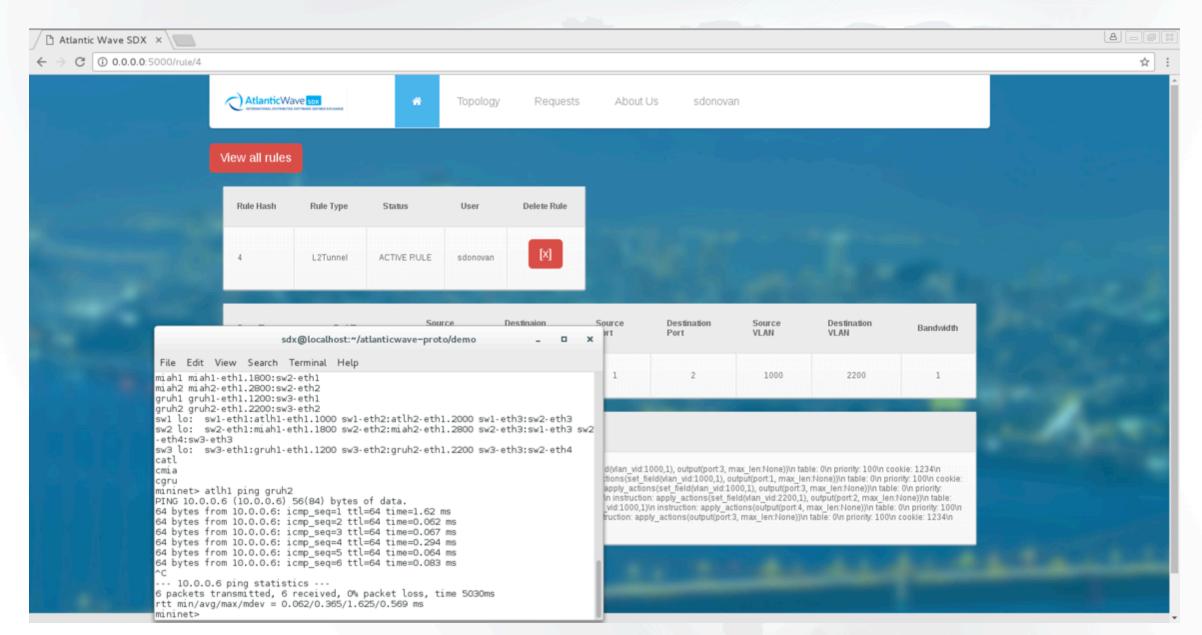
- L2 tunnels
 - Point-to-point
 - Multipoint
- SDX functionality
 - Network-header based rules
 - DNS-based rules
 - Other abstract rules
- In-Band Management
- Local Controller support for:
 - OpenFlow
 - P4
 - Others? Cisco or Juniper?

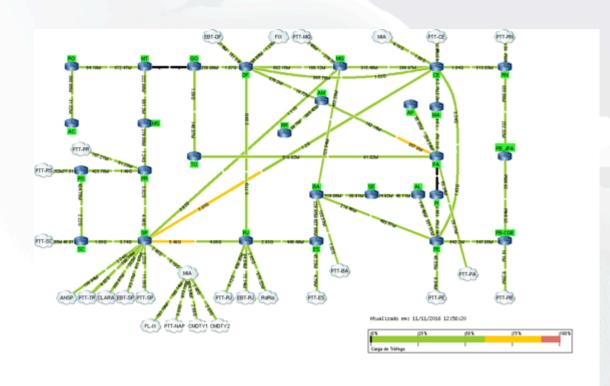

- NSI Integration for L2 Tunnels
 - Inbound
 - Outbound
- Limited BGP integration for SDX correctness
- User Interfaces
 - Easy to use Web interface
 - REST API
 - Example external controller using REST
- Shibboleth Integration

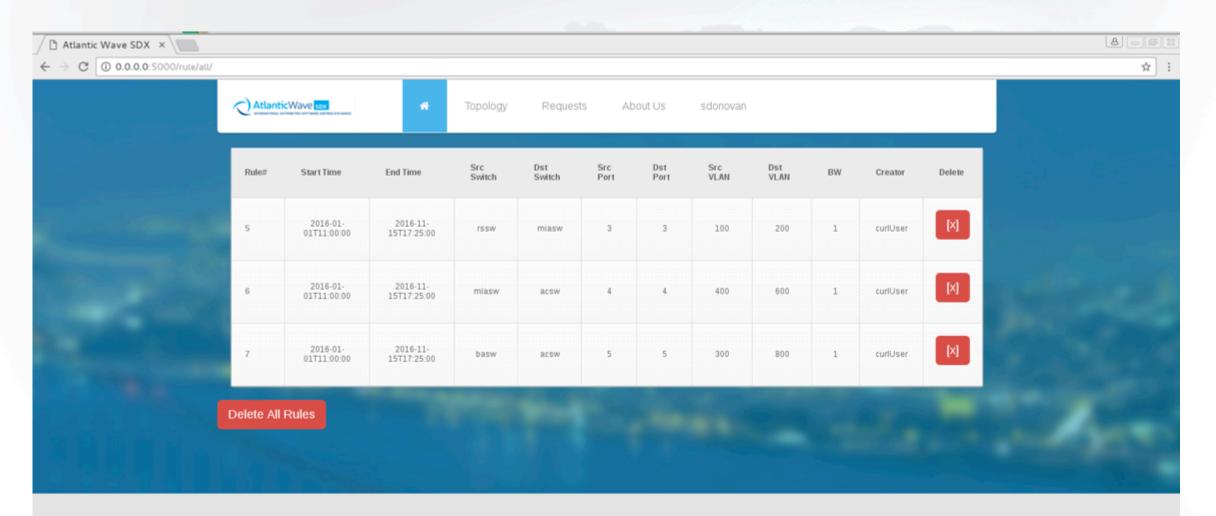
Functionality


- L2 tunnels
 - Point-to-point
 - Multipoint
- SDX functionality
 - Network-header based rules
 - DNS-based rules
 - Other abstract rules
- In-Band Management
- Local Controller support for:
 - OpenFlow
 - P4
 - Others? Cisco or Juniper?

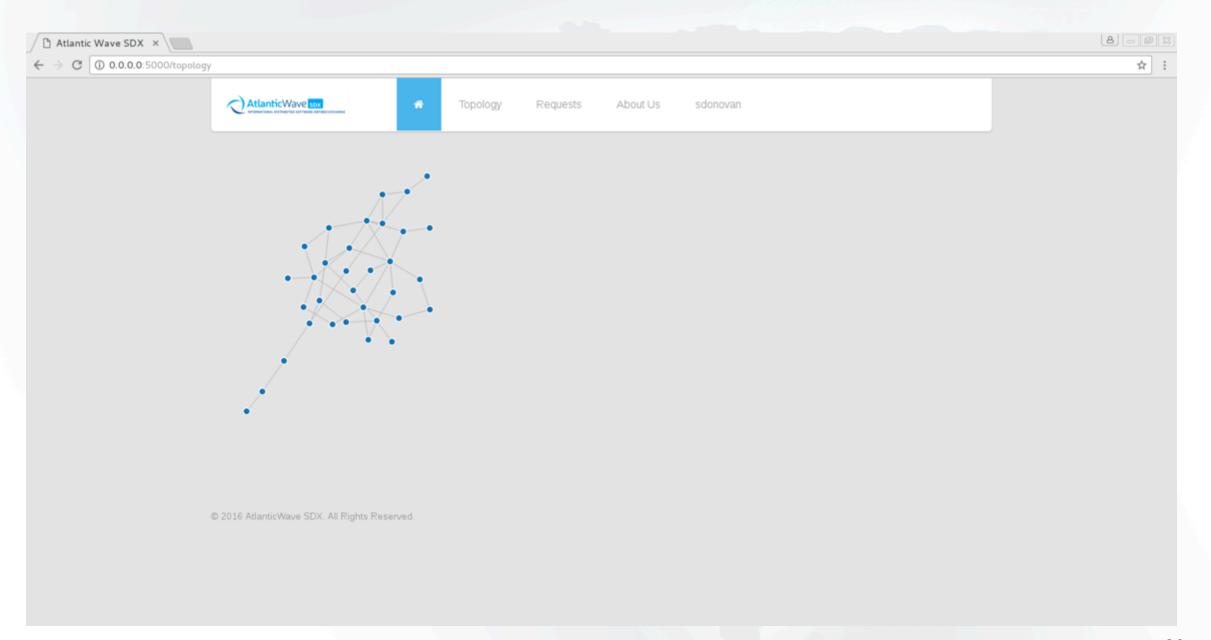

- NSI Integration for L2 Tunnels
 - Inbound
 - Outbound
- Limited BGP integration for SDX correctness
- User Interfaces
 - Easy to use Web interface
 - REST API
 - Example external controller using REST
- Shibboleth Integration


Demo 1


- Representation of Actual topology
- Simulated in Mininet
 - Still waiting on switch hardware
- Each host is on a different VLAN
- Showing real time connection establishment and removal



Demo 2


- RNP network topology in Brazil
- Simulated in Mininet
 - Slow, LC doesn't scale well in current form
- Adding a bunch of rules through REST

```
sdx@localhost:~/atlanticwave-proto/demo
File Edit View Search Terminal Help
[sdx@localhost demo]$
[sdx@localhost demo]$
[sdx@localhost demols
[sdx@localhost demo]$
[sdx@localhost demols curl http://localhost:5000/rule -F 'startdate=2016-01-01' -F 'starttime=11:00:00' -F 'enddate=2016-11-15' -F 'endtime=17:25:00' -F 'sour
ce=rssw' -F 'dest=miasw' -F 'sp=3' -F 'dp=3' -F 'sv=100' -F 'dv=200' -F 'bw=1' -X POST
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>Redirecting...</title>
<h1>Redirecting...</h1>
You should be redirected automatically to target URL: <a href="/rule/5">/rule/5">/rule/5</a>. If not click the link.[sdx@localhost demo]$ curl http://localhost:500
0/-F 'starttime=11:00:00' -F 'enddate=2016-11-15' -F 'endtime=17:25:00' -F 'source=miasw' -F 'dest=acsw' -F 'sp=4' -F 'dp=4' -F 'sv=400' -F 'dv=600' -F 'bw=1'
- X POST
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>Redirecting...</title>
<h1>Redirecting...</h1>
You should be redirected automatically to target URL: <a href="/rule/6">/rule/6</a>. If not click the link.[sdx@localhost demo]$ curl http://localhost:500
0/-F 'starttime=11:00:00' -F 'enddate=2016-11-15' -F 'endtime=17:25:00' -F 'source=basw' -F 'dest=acsw' -F 'sp=5' -F 'dp=5' -F 'sv=300' -F 'dv=800' -F 'bw=1'
- X POST
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>Redirecting...</title>
<h1>Redirecting...</h1>
You should be redirected automatically to target URL: <a href="/rule/7">/rule/7</a>. If not click the link.[sdx@localhost demo]$
[sdx@localhost demo]$
```


© 2016 AtlanticWave SDX. All Rights Reserved.

```
sdx@localhost:~/atlanticwave-proto/demo
 File Edit View Search Terminal Help
pkill -9 -f mininet:
*** Shutting down stale tunnels
pkill -9 -f Tunnel=Ethernet
pkill -9 -f .ssh/mn
rm -f ~/.ssh/mn/*
*** Cleanup complete.
[sdx@localhost demo]$ sudo python rnp-topo.py
net.build
net.start
mininet> pingall
*** Ping: testing ping reachability
rs100 -> X X mia200 X X X X X X X
|rs200 -> X X X X X X X X X X
|rs300 -> X X X X X X X X X X
|mia200 -> rsl00 X X X X X X X X X
|mia400 -> X X X X X X X X ac600 X
lba300 -> X X X X X X X X X ac800
lba400 -> X X X X X X X X X X
lba500 -> X X X X X X X X X X
ac400 -> X X X X X X X X X X
ac600 -> X X X X mia400 X X X X X
ac800 -> X X X X X ba300 X X X X
*** Results: 94% dropped (6/110 received)
mininet>
```


Thanks!

http://www.atlanticwave-sdx.net/

https://github.com/atlanticwave-sdx/atlanticwave-proto

Sean Donovan

sdonovan@gatech.edu

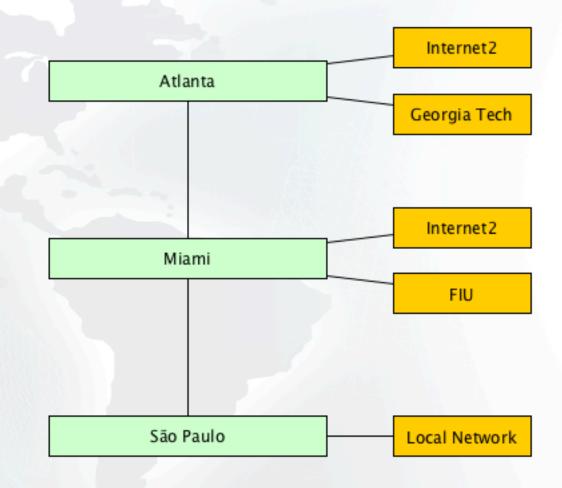
Russ Clark

russ.clark@gatech.edu

Jeronimo Bezerra

jbezerra@fiu.edu

Challenges


- Like any system, it's complicated
 - But there are some rather unique challenges
- Some solved, but lots of open questions
 - We'd like operator and user help with some of these challenges
- What would you want?
 - Network operators, domain scientists

Hardware

- We have some specific requirements
 - Multiple Table support
 - To reduce rule sizes dramatically
 - Cross Multiplication problem
 - 100Gbps
 - Based on the data rates that we expect
 - Support for most, if not all of OpenFlow 1.3
 - Features in OpenFlow 1.3 that are useful
 - OF Groups, for instance

100Gbps OpenFlow Equipment is Hard to Find

- Only a few manufacturers have OF 100Gbps gear and big interface buffers
- A lot only have 1 or 2 ports, need 3 or 4, depending on location

OpenFlow 1.3 (non) Support

- Many vendors claim 1.3 support
 - Often single table
 - Only rules X and Y, but not Z
 - Limited number of rules
 - TCAM limitations
- Study about support being overblown
 - Di Lallo et al., IEEE/IFIP NOMS 2016

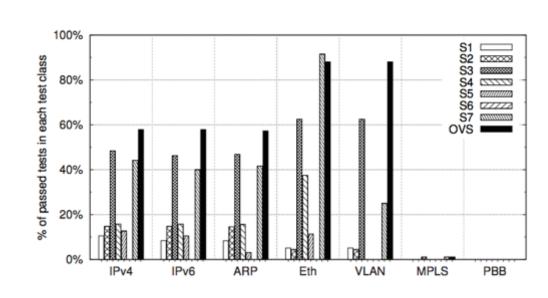


Fig. 5. Percentage of passed OF 1.3 Ryu tests for packets carrying specific protocols.

100Gbps + OpenFlow 1.3 + Multiple Tables

- Rather hard to find!
- Equipment's now trickling out

http://noviflow.com/products/noviswitch/

http://www8.hp.com/us/en/products/networking-switches/product-detail.html?oid=4177453

http://www.corsa.com/products/dp6440/

http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-2x100gbe-cfp2-ds.pdf

Abstractions

- What functionality do people need?
 - Point-to-point paths?
 - Point-to-multipoint?
 - Arbitrary routing?
- What should the API look like?
 - REST good enough?
 - Web-based interface?

- Who should it be tailored to?
 - Network admins?
 - Domain scientists?
 - General users?

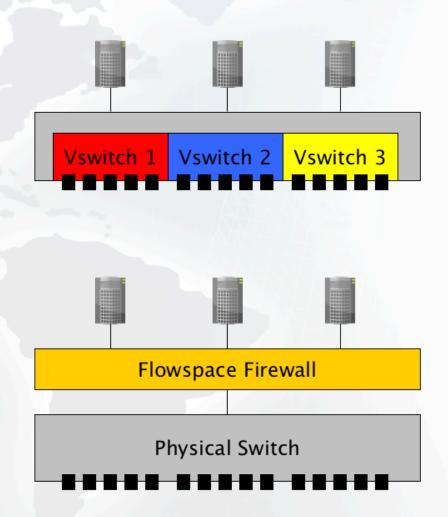
APIs for Different Audiences

Administrators

Domain scientists

What Functionality Would be Useful?

- NSI-like interface planned
 - Partially working now
 - Bandwidth restriction is not implemented.
 - With inter-network NSI integration in the future
- SDX rules based on DNS
 - Based on NetAssay
 - match(domain='example.com')
- Any suggestions?
 - SDX-based rules and rules outside of SDX functionality

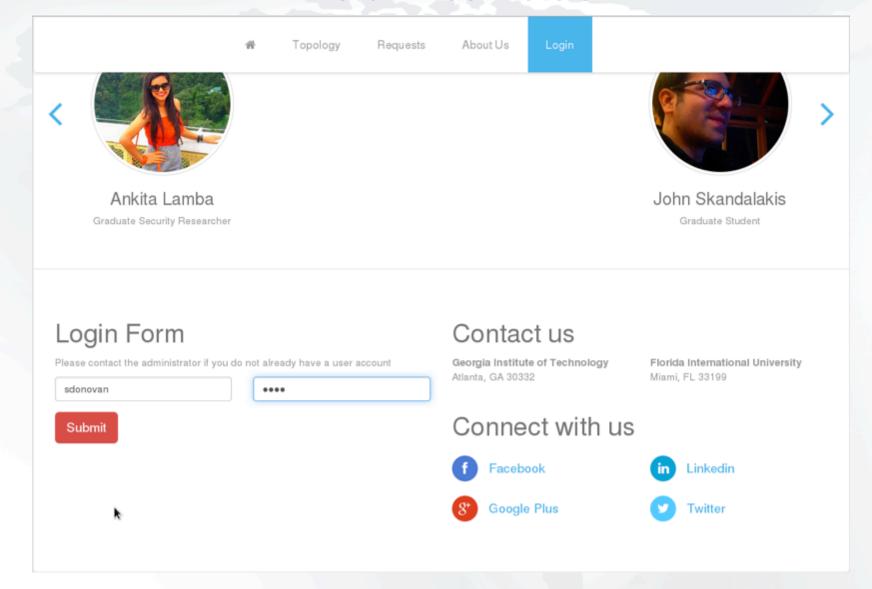

Do Administrators Care about Functionality Beyond BGP?

- Application-based peering
 - YouTube through Level3
 - Netflix through Cogent
 - Everything else through AT&T
 - Impossible with BGP
- Shared services at the SDX
 - Shared IDS for small businesses connection to the SDX
 - Web caching at the SDX

 Would administrators be interested in this type of functionality?

Federation

- Multiple Controllers with a Single Switch
 - Hardware virtualization
 - Per port, typically
 - New switches allow for per VLAN
 - Software Hypervisor
 - Use something like FlowSpace Firewall
 - Below the LC, for AtlanticWave/ SDX
 - FSF does not support OF1.3


Federation

- Integrating other Networks
 - Integration with NSI
 - There are a number of NSI speakers that could be used to integrate with AtlanticWave/SDX
 - Shibboleth connectivity
 - Users will be academics, primarily
 - MS student actively working on this

Current Status

- Focusing on NSI-like functionality right now
 - Default IXP behavior will follow
- Initial version of the controller is built
 - Has limitations, but being continuously developed
- Prototype Web Interface
 - Limited to adding rules
- Configuration files for static configurations
 - Users and topology are static at startup

Web Interface

Web Interface

	#	Topology	Requests	About Us	sdonovan
		Re	eques	t a Pi	ре
L	Jsers ca	an request fo	r a pipe base	ed on their r	requirements and role
			Network Engin	eers Scientists	
Enter the start date:		Enter the	e desired bandwidt	h:	Enter the source VLAN:
2016-10-10		1			2387
Enter the start time:		Enter the	physical port num	ber at source:	Enter the destination VLAN:
00:00		1			5478
inter the end date: Enter the physical port number at destination:		n: Select source:			
2016-10-17		2			Miami
Enter the end time:					Select destination:
23:59					Atlanta
Preview Submit					

Meet the Team

Web Interface

i | 127.0.0.1:5000/pipe

```
"l2tunnel": {
  "dstswitch": "atl-switch",
 "bandwidth": "l",
  "srcswitch": "mia-switch",
  "srcvlan": "2387",
  "starttime": "2016-10-10T00:00:00",
  "dstvlan": "5478",
  "endtime": "2016-10-17T23:59:00",
  "srcport": "l",
  "dstport": "2"
```

Timeline

- Public Github
 - https://github.com/atlanticwave-sdx/atlanticwave-proto
- October for NSI/AL2S-like functionality completed
 - Missing bandwidth reservation as of today
- Early November for DTN-to-DTN for domain scientists
- November for running on hardware switches
- December for initial SDX functionality

References

- Stringer, Jonathan Philip, et al. "Cardigan: Deploying a distributed routing fabric." *Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking*. ACM, 2013.
- Stringer, Jonathan, et al. "Cardigan: SDN distributed routing fabric going live at an Internet exchange." 2014 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2014.
- Gupta, Arpit, et al. "SDX: a software defined internet exchange." *ACM SIGCOMM Computer Communication Review* 44.4 (2015): 551-562.
- Gupta, Arpit, et al. "An industrial-scale software defined internet exchange point." 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). 2016.
- Chung, Joaquin, Henry Owen, and Russell Clark. "SDX architectures: A qualitative analysis." *SoutheastCon 2016*. IEEE, 2016.
- di Lallo, Roberto, et al. "On the practical applicability of SDN research." NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016.

Current SDX Deployments

- Cardigan Wellington Internet Exchange and REANNZ
 - Very, very early implementation
 - In early 2014, was deployed for 9 months with only 1134 flows
 - Rather traditional IXP
- Maryland/WIX
 - Controller lives "above" Oscars
 - Adding compute to the mix
- PacificWave-SDX
 - This is the most like AtlanticWave/SDX, distributed on the west coast of the US
 - Also a distributed exchange between Seattle, Sunnyvale, CA, and Los Angeles, CA
 - SDX in parallel with their traditional fabric

Current Examples of SDX Research

- Gupta et al., SIGCOMM 2014 Initial work, where our definition comes from
- Gupta et al., NSDI 2016 Optimization work, to allow for scalability
- GENI SDX Early work at deploying an SDX using GENI project infrastructure, still ongoing
- Work at Starlight Working on evaluating various SDX design
- SDX taxonomy in Chung et al., SoutheastCon 2016.

Cross Multiplication

	A-in	B-in	C-in
A-out			
B-out			
C-out			

Cross Multiplication

	A-in	B-in	C-in
A-out	A-in*A-out	B-in*A-out	C-in*A-out
B-out	A-in*B-out	B-in*B-out	C-in*B-out
C-out	A-in*C-out	B-in*C-out	C-in*C-out

- O(N²) sets of rules
- Some optimizations are possible
 - The diagonal can be eliminated
 - Gupta, et. al., 2014 discusses other optimizations

Cross Multiplication

	A-in	B-in	C-in
A-out		B-in*A-out	C-in*A-out
B-out	A-in*B-out		C-in*B-out
C-out	A-in*C-out	B-in*C-out	

- O(N²) sets of rules
- Some optimizations are possible
 - The diagonal can be eliminated
 - Gupta, et. al., 2014 discusses other optimizations

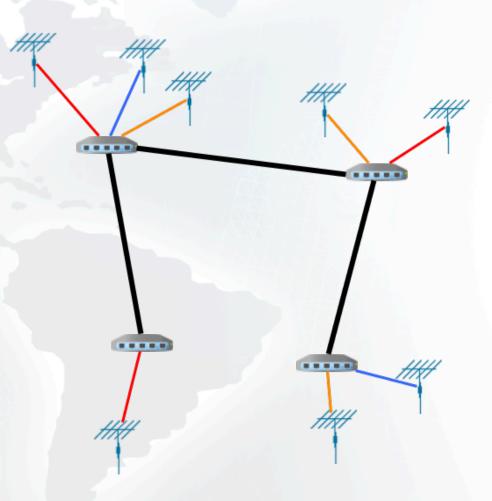
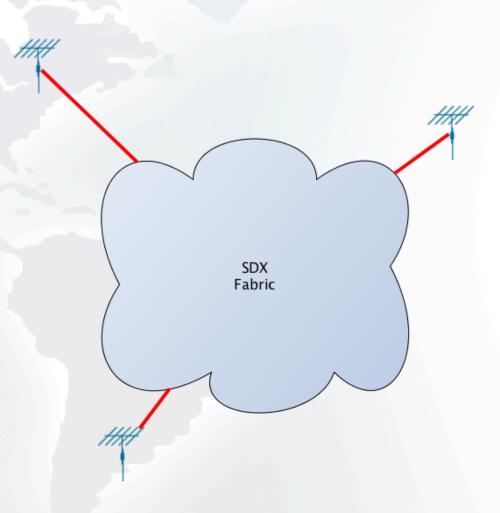

Multiple tables are better

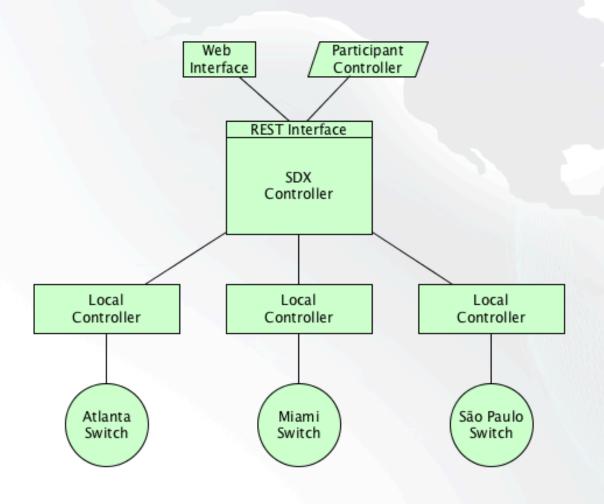
Table 1	Table 2
A-out	A-in
B-out	B-in
C-out	C-in

- With multiple tables, we can pipeline the outbound and inbound rules
- O(2N) sets of rules
 - Much better than O(N²)
- Think of a dozen participants:
 - ~144 sets of rules vs ~24 sets
- Much simpler to implement


Deployment Outside of AtlanticWave/SDX

- Example deployment
 - In a city with a distributed SDX, like AMS-IX
 - Mobile phone backbone for multiple carriers
- Does this change what sorts of abstractions someone would want?

Deployment Outside of AtlanticWave/SDX


- Example deployment
 - In a city with a distributed SDX, like AMS-IX
 - Mobile phone backbone for multiple carriers
- Does this change what sorts of abstractions someone would want?

Security

- SDN and Security isn't discussed nearly enough
 - Most academic work glosses over security aspects of what they developed
 - New attacks are possible due to the design change over traditional networking
- This is being deployed
 - So we care a lot about security

Security Issues in AtlanticWave/SDX Design

- Information leakage
 - Rules/data leaking to unauthorized users
- DoS attacks
 - REST API is susceptible
 - In-band SDX-to-LC should mitigate
- Policy overlap
 - New user policies must not violate other user's policies

Authentication

- User authentication
 - TLS certificate authentication
 - Would an SSH tunnel with a certificate be enough?
- Local controller and SDX controller
 - Prevent unauthorized rules coming from a fake SDX controller
 - Prevent snooping from a fake local controller
 - Bi-directional TLS authentication with certificates

Authorization

	Admins	Domain Scientists	Data Agent	Research Assistant
GT				
FIU				
NCSA				
UofA				

- What's the correct level of granularity in authorization?
 - Roles
 - Organizations
- What Actions should be authorized?
 - At what granularity should actions be authorized?
 - Positive or negative authorization?
- Future project
 - MS Student

Actions requiring authorization

- Installing rules
 - Per port
 - Per switch
 - Types of rules
- Removing rules
 - Own rules
 - Same org. rules
- Get Statistics
 - To authorize automated collection methods
- View Rules
 - Per user
 - Per organization
 - Per switch

Management

Failover

- Distance = Latency
- Latency = Problems
- AtlanticWave/SDX is not a physically small network
- Should there be more autonomy at the LC for failover?

	Atlanta	Miami	São Paulo
Atlanta	-	13ms	119ms
Miami	81 MB	-	106ms
São Paulo	743 MB	662 MB	-

Sustainability

- Currently supported by NSF Grant #ACI-1341024 2015-2020
- How to make this self sufficient/sustainable?
- What's a good business model?
- Other research networks are facing the same question (e.g., GENI)