

AmLight SDN: Updates since last year

CLARA-TEC Meeting July 9 2015 Vinã Del Mar, Chile

Humberto Galiza, Senior Network Engineer Jeronimo Bezerra, Chief Network Engineer {galiza,jab}@amlight.net

Who we are

AMPATH:

- Academic IXP in Miami
- Interconnects all Latin America RENs to other RENs in the world

SouthernLight:

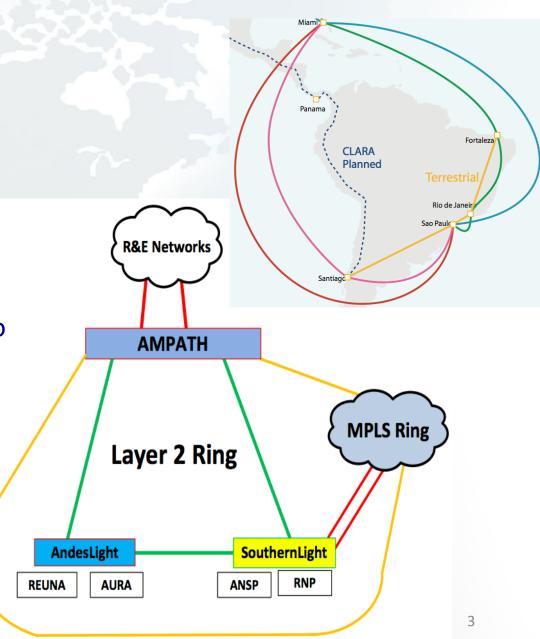
- Academic IXP in Sao Paulo
- Interconnects all Brazilian RENs and RedCLARA

AmLight:

 Academic network that connects SounthernLight to AMPATH and other RENs in the world

Partners: FIU, NSF, ANSP, RNP, RedCLARA, REUNA and AURA

AmLight Today



A set of 4 x 10G links with two topologies:

- SDN Ring (Miami-Sao Paulo-Santiago)
- MPLS Ring (Miami-Brazil-Miami)
- Sep 1st: 100G link between Sao Paulo and Miami
- Mutual Redundancy

Connections:

- 13 RENs
- > 1200 Universities and Research Centers

AmLight Before SDN

Configuration based on static VLANs

Multiple instances of per-VLAN RSTP

- Mutual redundancy created wth:
 - IEEE 802.1ad (QinQ) + L2VPNs
- AmLight has achieved 100% availability in 2013, assuming that at least one 10G link was available.

Why has AmLight moved towards SDN?

Key motivations:

Improving operations efficiency

Introducing network programmability

Motivation 01: Improving Operations Efficiency

Amount of layer 2 circuits requested and networks involved makes the provisioning a complex process:

- Some circuits involve up to seven different networks
 - High level of coordination required with diverse network teams
- Multiple technologies involved
 - From Layer 1 to MPLS
- Some circuits took weeks or even months to be provisioned

Motivation 02: Introducing Network Programmability

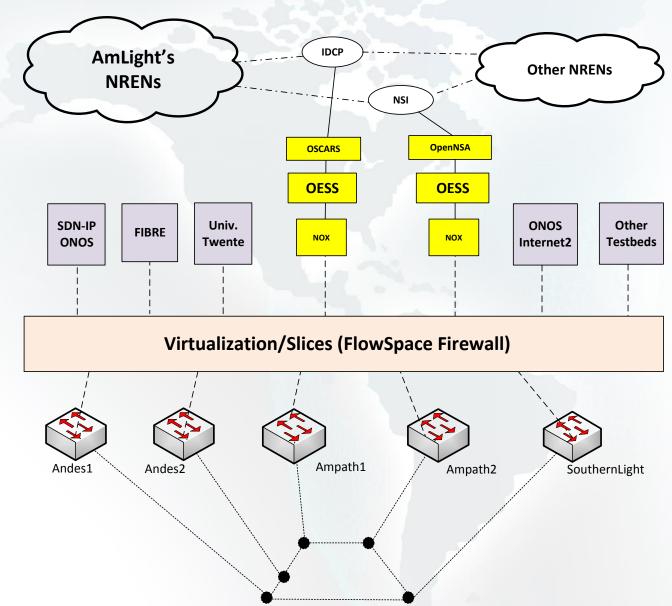
 Researchers could only view the network status (SNMP)

 The lack of support for network programmability compromises network-aware demos and applications

Scenario Deployed (1/2)

Activated Openflow 1.0 + Hybrid Ports

- A. Improving operations efficiency:
 - Internet2's OESS
 - OSCARS IDCP
 - OpenNSA NSI
- B. Introducing network programmability
 - Internet2's Flow Space Firewall
 - Network Slice Capability


Scenario Deployed (2/2)

Northbound: Users' APIs

Southbound API: OpenFlow 1.0

Physical Layer

Findings (1/2)

A. Improving operations efficiency

	Average time to provision		Avg. number of e-mails	
	a new circuit		exchanged	
Domains Involved in the path	before SDN	with SDN	before SDN	with SDN
RNP, ANSP, RedClara, AmLight, Internet2, ESNET	5 days	< 5 minutes	10	0
Other networks (if IDCP or NSI supported)	12 days	< 5 minutes	65	0
Other networks with NO IDCP or NSI - < 3 networks in the path	5 days	-	10	-
Other networks with NO IDCP or NSI - > 3 networks in the path (Americas)	12 days	-	65	•
Other networks in other continents not using IDCP or NSI	45 days		100	

Findings (2/2)

B. Introducing network programmability

	Network Access and Programmability			
	Before SDN	After SDN		
Network View	SNMP	SNMP and Openflow		
Provisioning Defined by				
the User	-	Full Openflow access through a dedicated slice		
Multipath experiments	Static paths offered			
Flow controlled hop-by-				
hop	-			

Network programmability is the main achievement of this project:

Network-aware applications will have AmLight as a real platform for innovation

Who is using AmLight SDN?

Current Testbeds (1/2)

Interconnecting Testbed's Islands with OpenFlow

- In partnership with RNP, a FIBRE testbed island was installed at AMPATH
- More than ~300 VLANs required between islands (hard to provision)
- AmLight SDN slicing capability in use to interconnect islands natively

NSI testing deployment

- AmLight uses OpenNSA for NSI inter-domain communication
- OpenNSA is a software agent of NSI protocol developed by Nordu.Net
- OpenNSA doesn't support Openflow as backend for network configuration
- AmLight has developed their own backend to integrate with the SDN network
- As this code and the NSI protocol are new, a separated slice was created to avoid impact to the production traffic
- Using the real network but in a dedicated slice with no impact for production

Who is using AmLight SDN?

Current Testbeds (2/2)

Testing new controllers and applications in a separated slice

- New controllers and applications can be easily added for tests (ONOS, Vyatta, etc.)
- Two orchestrators in place at the same time with no overlapping

Demonstrations

- Internet2 Multi-Domain Slices (Oct 2014 I2 Tech Exchange Meeting)
 - How multiple slices from different networks could look like one single slice?
 - We showed this was possible and easy to manage
- Internet2 Inter-Domain IP connections (Apr 2015 I2 Global Summit and ONS 2015)
 - How to interconnect SDN islands using IP?

OpenFlow Statistics Validation

- PhD study at the University of Twente, The Netherlands
- OpenFlow Statistics showed bad values coming from some OpenFlow switches
- A partnership was created to evaluate AmLight switches
- The work is all being done remotely
- Fundamental for load-balancing applications in the future (big data applications)

Future Challenges

- How to scale and support high # of parallel network testbeds?
- How to manage testbeds in a production network?
- While we learning, new testbeds need to be implemented: SDX
- How to migrate network devices between OF versions?

Future work

- Testbed Sanitizer an OF messages validator
 - Goal: to verify and validate OF equipment capabilities
 - Useful to avoid and to solve problems with 'poor' OF implementations in equipments
- Migrate to Openflow 1.3
 - Upgrade equipments and applications
 - Add more resources: match IPv6, QinQ, QoS, Port Group, etc.

- Deploy applications for QoS and Bandwidth Reservation
 - Requirement to some Big Data applications

Thanks!

www.sdn.amlight.net

CLARA-TEC Meeting
July 9 2015
Vinã Del Mar, Chile

Humberto Galiza, Senior Network Engineer
Jeronimo Bezerra, Chief Network Engineer
{galiza,jab}@amlight.net