

VII Workshop Pesquisa Experimental da Internet do Futuro (WPEIF)

Jun 3rd 2016

Moving an IP network to SDN:

A global use case deployment experience at AmLight

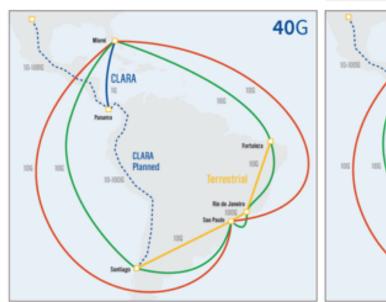
Humberto Galiza, Marcos Schwarz

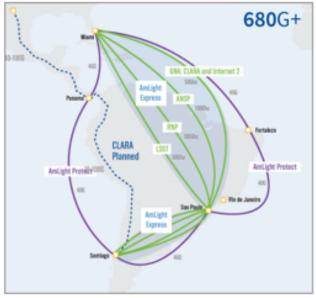
Rede Nacional de Ensino e Pesquisa {humberto.galiza,marcos.schwarz}@rnp.br

Jeronimo Bezerra, Julio Ibarra Florida International University {jbezerra,julio}@fiu.edu

Outline

- Context
- Motivation
- Introducing ONOS and the SDN-IP application
- Global ONOS SDN-IP deployment
- ONOS SDN-IP testbed at AmLight


Context: AmLight Today and Future


AmLight is a Distributed Academic Exchange Point

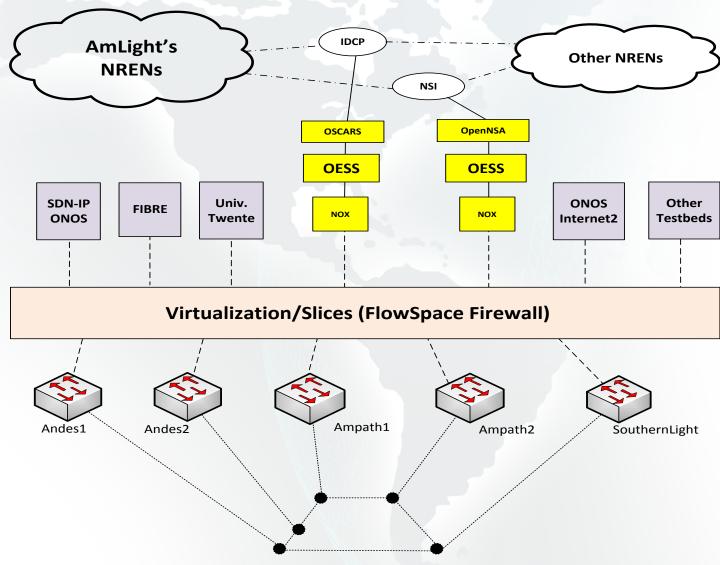
- Responsible to connect Latin America RENs to the U.S.
 - Support research and education activities and <u>foster</u> network innovation

Backbone: AMLIGHT: Current to 2031

Current 2015-2017 2018-2031

NSF support for <u>AmLight</u> Express & Protect is part of a scalable rational architecture, designed to support the needs of the U.S.-Western Hemisphere research and education community that supports the evolving nature of discovery and scholarships.

NSF Award# ACI-1451018


Context: AmLight SDN

Northbound: Users' APIs

Southbound API: OpenFlow 1.0

Physical Layer

Motivation

- Scenario after migration to SDN/OpenFlow
 - OpenFlow 1.0 up and running
 - Virtualization Layer deployed with Flow Space Firewall
 - Production L2VPN application: Internet2 OESS
 - Both intra and inter domain (OSCARS and NSI) provisioning supported
- But what next?
 - How do we provide more advanced features such as IP traffic routing using OpenFlow?
 - How do we support VPLS and L3VPNs services on top of the SDN/OpenFlow network?

Motivation [2]

 In response to these challenges, AmLight joined Internet2 and GEÁNT in 2015, with the goal of creating a global Layer 3 infrastructure connecting RENs, using Open Source software and SDN/OpenFlow devices.

Main goals:

- End-to-end provisioning of Layer 3 connectivity without using legacy routers
- Transform Autonomous Systems (AS) running OpenFlow into IP/BGP transit networks
- Provide a feasible migration strategy from legacy IP/BGP networks towards an SDN/OpenFlow approach

ONOS and the SDN-IP application

Why ONOS?

 Free, Open Source, carrier-grade SDN OS designed for Service Providers

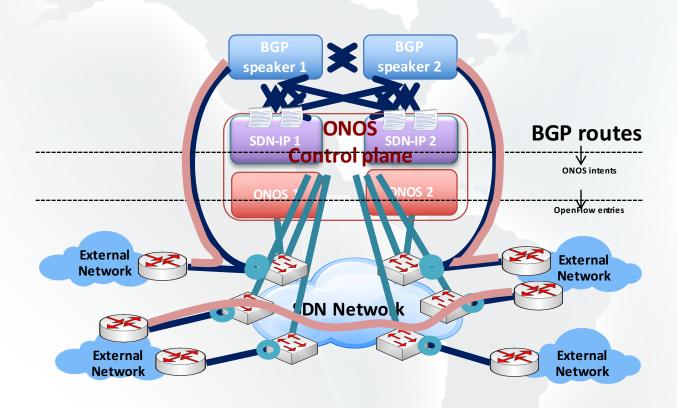
 Well-defined Northbound and Southbound abstractions and software modularity

– Key Principles:

- Scalability
- High Availability
- Performance

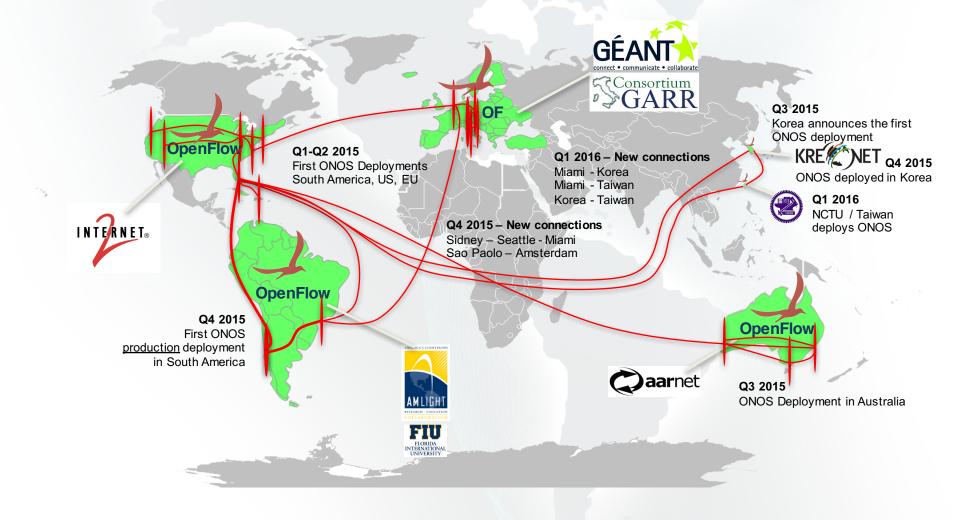
ONOS and the SDN-IP application [2]

ONOS SDN-IP


 It is able to connect an Software-Defined network to external networks by using BGP

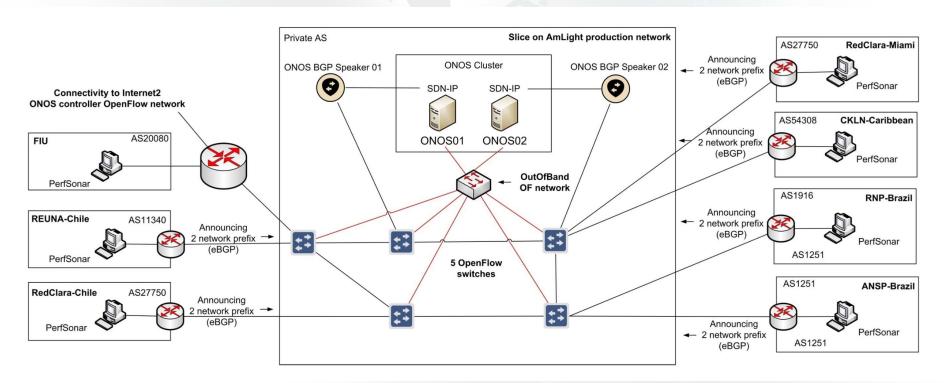
It provides a migration path to SDN

 It decreases costs (L3 communication with no core routers)

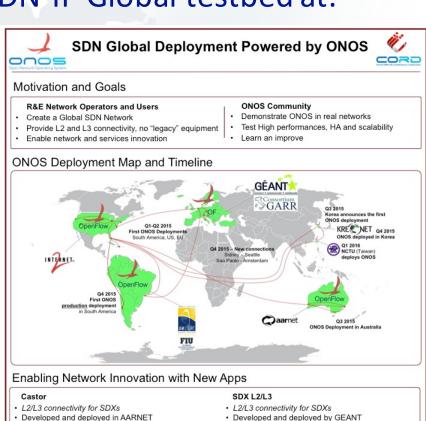


SDN-IP architecture

Global SDN deployment powered by ONOS



ONOS SDN-IP testbed at AmLight


- Major challenges
 - OpenFlow features support (or lack of support)
 - Testbed sanitizer process: validation of a new testbed

SDN Global Deployment demos

- We demonstrated the ONOS SDN-IP Global testbed at:
 - ONS 2015
 - SIGCOMM 2015
 - ONS 2016

· L2 broadcast overlay networks on demand

· Ready to be deployed on AmLight

· Transforms a SDN into a transit IP network

Bring more R&E network operators online Support multi-table pipeline switches Focus on stability, performances and scalability

L3 connectivity without legacy routers
 Deployed by AmLight, Internet2, KREONET, NCTU

Future work

· SDN AS uses BGP to communicate with neighbors

Final Considerations

- Global SDN deployment provided excellent visibility and experience to AmLight
- AmLight's network slicing capability has proved to be a valuable asset for testing new solutions using real network hardware and in a large scale
- ONOS and its SDN-IP application was validated as a non disruptive solution that could be easily used as a migration path from legacy IP/BGP networks towards an SDN approach
- As soon as we move to OF 1.3 we'll test more features with ONOS, such as multi-table pipeline support, QoS and IPv6 routing.
- We have plans to test more advanced features with ONOS, such as the VPLS application.

Acknowledgements

We'd like to thank ON.Lab team
 (www.onlab.us), in special Luca Prete, for all support provided for this experimentation.

VII Workshop Pesquisa Experimental da Internet do Futuro (WPEIF)

Jun 3rd 2016

Thank you! Questions?

Moving an IP network to SDN:

A global use case deployment experience at AmLight

Humberto Galiza, Marcos Schwarz, Jeronimo Bezerra, Julio Ibarra {humberto.galiza, marcos.schwarz}@rnp.br, {jbezerra, julio}@fiu.edu

