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Abstract—New scientific instruments that are being designed 

and deployed in the coming years will dramatically increase the 

need for large, real-time data transfers among scientists 

throughout the world. One such instrument is the Large Synoptic 

Survey Telescope being built in Chile that will produce 6.4 GB 

images every 17 seconds. This paper describes an ongoing effort 

to meet the demands of these large data scientific instruments 

through the development of an international software defined 

exchange point (SDX) that will meet the provisioning needs for 

the scientific users. The specific planned and ongoing work in 

SDX architecture is described with specific consideration for 

policy specification and security. 

Keywords—Software Defined Exchange; Science Data 

Applications;  SDN 

I. INTRODUCTION 

The Large Synoptic Survey Telescope (LSST) is a 
proposed large-aperture, wide-field, ground-based telescope 
that will scan half the sky continuously for 10 years. The 8.4-
meter telescope will be located in the Andes mountains in 
Chile, taking a 6.4 GB image every 17 seconds. Each of those 
images needs to be transferred to NCSA within approximately 
five seconds so that processing can be completed in time to 
distribute transient alert notifications to the worldwide 
astronomical community within 60 seconds.  

The international long-haul network interconnecting Chile 
to the U.S. is a critical component of the LSST system design 
because of the significance of LSST’s operational requirements 
(e.g., the short interval between big data set transfers). The 
LSST operation will be composed of two channels: a control 
channel and a data channel. The control channel handles the 
remote operation of the telescopes in Chile by NOAO in 
Tucson, AZ. 

These channels must be secure (i.e., encrypted), and they 
require low latency, high priority, and low bandwidth. In every 
17 second interval, the data channel is also responsible for 
transmitting 6.4 GB images within 5 seconds. Such intervals 
and timing constraints also require high bandwidth availability, 
besides low latency and high priority. While the control 
channel requires a few Mbps, the data channel burst is 
estimated to be close to 90 Gbps. 

To achieve the aforementioned requirements, the end-to-
end path must provide high resilience, low delay, multiple 
paths, high bandwidth and an efficient control plane to act in 
all status changes (i.e., port status, devices outages, etc). The 
operational complexity of managing different administrative 
domains, topologies, link technologies, devices, and 
requirements is challenging when using traditional network 
operations methodologies for provisioning, monitoring and 
operating networks. 

The AtlanticWave-SDX project aims to develop a 
capability to support applications, such as the LSST, that have 
intensive network resource requirements. In response to 
LSST’s requirements for multiple diverse channels for control 
and data transport, AtlanticWave-SDX will leverage the SDN 
resources of the AmLight-ExP [1] network between the U.S. 
and South America. 

The end-to-end path for LSST will be composed of 
different academic networks, some of them supporting SDN 
and network programmability. Having information about 
network resources and control for programmability will enable 
LSST applications to react to network conditions in a more 
efficient way, sometimes even anticipating issues.  For 
example, a link that will flap might be detected when a 
CRC/loss number increases. With network programmability, 
LSST applications will be able to provision multiple paths 
dynamically and on demand, apply QoS and prioritization 
policies, and manipulate flows at multiple levels.  Using 
information made available by all network devices on the path, 
LSST applications will be able to select the preferred paths 
from among several choices for sending its traffic from Chile 
to the U.S, vice versa, and also control the telescope remotely. 

As mentioned above, the LSST end-to-end path will be 
provided by multiple networks, and in most cases, these 
networks are interconnected by academic exchange points. To 
achieve end-to-end programmability and control, all academic 
exchange points along the path must support network-aware 
applications. Fortunately, exposing network control capabilities 
to applications within a single SDN domain is now feasible and 
many academic networks (e.g., AmLight, Internet2, and EsNet) 
provide this capability today. This is not the case for 
applications that must span multiple domains. Most of the 
current Academic Exchange Points are still using traditional 



methodologies for forwarding (e.g., IP or MAC-based 
forwarding) and control (e.g., a NOC team controlling network 
devices through SSH and/or SNMP). 

For applications that span multiple network domains, all 
programmable network features mentioned before have to be 
supported by all academic network exchanges along the path, 
and with LSST as a use case, a few items are very explicit: 

 Control Channel: due to its high priority profile, the 
LSST application has to be able to apply QoS policies 
to select the lowest latency port/link of the academic 
exchange point. If multiple links are available, inbound 
and outbound traffic engineering techniques will be 
applied to guarantee redundancy and prioritization, 
even over the Data Channel. As security is a must for 
the control channel, if available, encryption has to be 
enabled in the lowest level possible, and network 
isolation must be guaranteed to avoid hijacks. 

 Data Channel: the main characteristic of the Data 
Channel is the bandwidth required, which is associated 
with delay, jitter and tolerance to packet loss. Traffic 
engineering and prioritization are also mandatory 
features that all academic exchange points must 
support. The LSST application will need to define what 
links to use, create multiple paths and apply other load 
balance approaches to guarantee its requirements. 

An academic exchange point supporting these features is 
called a Software-Defined Exchange, and it is considered the 
next step in the network evolution following the SDN line of 
thinking. This SDX must be open, programmable and resilient. 
All its external interfaces must also be secure and support 
standard interfaces to support different kinds of network-aware 
applications. 

II. BACKGROUND 

Currently, there is no single, agreed upon definition of what 
Software Defined Exchange (SDX) means. The spectrum of 
definitions ranges from Networking Exchanges to Cloud 
Service Exchanges. Moreover, below the networking SDX 
definition, we can have: (1) Layer-3 SDX’s that provide 
connectivity and routing between Autonomous Systems (AS) 
as in the case of an Internet Exchange Point (IXP); (2) Layer-2 
SDX’s for multi-domain Ethernet circuits; and (3) SDN SDX’s 
to interconnect SDN islands. Likewise, the Cloud Service SDX 
provides access to compute and storage resources from 
different administrative domains. In the next sections, we 
provide examples of recent Layer-3, Layer-2 and SDN SDX’s 
as those are more relevant to the AtlanticWave-SDX project; 
Cloud Service Exchanges could be seen as Federated Clouds. 
In Figure 1, we show a taxonomy for the Network Exchanges 
we consider. 

A. Layer-3 SDX 

As mentioned before, a Layer-3 SDX provides connectivity 
between different Autonomous Systems. The main 
characteristic of this kind of SDX is that a BGP process is 
required to handle the exchange of BGP routes. The minimum 

additional requirements are a SDN fabric and a SDN controller 
to install flows between the participants. It is desirable that the 
SDX has a Policy Manager to enrich the policies that can be 
defined with BGP. Some examples of Layer-3 SDX’s are 
SDN-IP [2], Cardigan [3,4] and SDX [5], which are described 
in more detail next. 

Lin et al. [2] proposed a solution to enable BGP peering 
between SDN and non-SDN Autonomous Systems. To achieve 
BGP peering, the centralized SDN control plane integrates a 
BGP process; turning the entire SDN AS into a single BGP 
router from the point of view of its peers. The solution was 
developed as an application in the ONOS controller, and tested 
using an emulated Mininet topology. Their experiments tested 
how the number of Routing Information Base (RIB) entries 
affects the memory incremental cost. The authors concluded 
that SDN-IP can scale up to 10,000 RIB entries, processing 
100 RIB updates per second. 

Cardigan [3,4] is a distributed router based on RouteFlow 
and a mesh of OpenFlow switches that are represented as a 
single logical switch. The goal is to implement a SDN-based 
distributed routing fabric. Cardigan’s datapath works in a full-
mesh, like router’s line cards and fabric cross-connects using 
proactive flow installation. Cardigan was deployed connecting 
the Research and Education Advanced Network of New 
Zealand (REANNZ) to the Wellington Internet Exchange 
(WIX), handling 1134 flows with a TCP performance of 
800Mbps approximately. 

Gupta et al. [5] proposed the design, implementation and 
evaluation of SDX, to improve the network management 
capabilities of BGP participants in an Internet Exchange Point 
(IXP). The main idea behind SDX is to present a virtual SDX 
switch to each BGP participant, so they can realize high level 
tasks such as: application-specific peering, inbound traffic 
engineering, wide-area load balancing, and redirection through 
middle boxes all while ensuring isolation between the policies. 
For this solution, each participant sends its policies to the SDX 
controller; then the SDX engine compiles the individual 
policies and installs a single set of policies on the SDX switch. 
The authors claim that just adding a SDN switch and controller 
to an IXP, as in the previous examples, is not enough to realize 
a SDX. The first version of this SDX was implemented using 
Pyretic [6] running on a POX controller, an enhanced version 
is being implemented using Pyretic and a Ryu controller [7]. 

B. Layer-2 SDX 

A Layer-2 SDX allows operators to create multi-domain 
circuits; typically using Layer-2 technologies like Ethernet 
VLANs. This scenario is mainly used in Research & Education 
Networks such as Internet2 and ESnet. For instance, Internet2's 
Advanced Layer 2 Service (AL2S) [8] allows network 
operators to create their own Layer 2 circuits in the Internet2 
AL2S backbone connection two or more endpoints. Similarly, 
the On-demand Secure Circuits and Advance Reservation 
System (OSCARS) [9] accomplishes the same goal in the 
Department of Energy’s high-performance science network 
ESnet. 



C. SDN SDX 

The design objective of the SDN SDX is to interconnect 
SDN islands managed by different domains. The WE-Bridge 
[10] is a mechanism to enable different SDN administrative 
domains to peer and cooperate. WE-Bridge itself is not an 
inter-domain routing protocol, but a platform to exchange basic 
network information between different domains. The main goal 
is to improve inter-domain routing by announcing domain-
views containing rich/fine-granularity information/policies, to 
enable various inter-domain innovations based on network 
information. This solution includes a network view 
virtualization, and a virtual network format and distribution 
using JSON. The peer relationships are established through a 
peer-to-peer control plane and a modified version of Link 
Layer Discovery Protocol (LLDP) to connect domain border 
switches. Contrary to the peer-to-peer approach used by the 
WE-Bridge, Mambretti et al. [11,12] proposed a centralized 
Path Controller to manage the resources of federated controller 
in order to interconnect federated SDN islands. 

Similar approaches are the Service Provider SDN (SP-
SDN) [13] and MEF’s Lifecycle Service Orchestration (LSO) 
[14]. Both proposals envision a service orchestration layer on 
top on the SDN control layer, which span different 
administrative domains. Some application examples presented 
in these projects are: elastic WAN, network slices on-demand, 
VPN circuits on-demand, and end-to-end Network-as-a-
Service. 

D. SDX Characteristics 

As we have seen, a SDX could exchange BGP routes, 
Layer-2 circuits, computing and storage capacity. More 
generally, an important characteristic of an SDX is its ability to 
exchange networking, computing or storage resources in a 
common point, between different administrative domains. 
Furthermore, the capability to apply richer policies to the 
exchange of these resources is another important characteristic 
of the SDX. Finally, in terms of security, strong isolation of 
constituent data and control interfaces is a desirable 
characteristic of a SDX. 

III. ACHITECTURE 

The AtlanticWave-SDX project is working to extend the 
SDX concept to a production deployment of a multi-domain 
SDX involving three academic exchange points, which include 
Southern Light; AMPATH and SoX, using the AtlanticWave 
100G network. When fully deployed, AtlanticWave-SDX will 
provide application users with an end-to-end service that 
supports the traffic policy requirements of the application 
across multiple Autonomous Systems and physical exchanges. 

There are several alternatives for how such an end-to-end 
capability can be provided. Figure 2 shows the proposed 
topology with three options of deployment. Option 1 assumes a 
single SDX controller that manages the entire IXP switch 
fabric. While this approach is the simplest technical option it is 
not ultimately viable in a distributed, multi-party environment. 

 
Fig. 1 - Network SDX Taxonomy 



Option 2 introduces an intermediate slice manager, such as 
FlowVisor [15] or Flowspace Firewall [16], that allows 
individual controllers to be handed a slice of the network 
resources to be managed while isolating those resources from 
others. Option 3 creates a hierarchy of controllers with a local 
controller at each exchange being managed by a separate 
higher level controller. We expect Option 2 to be the most 
practical approach for the near term and intend to focus here 
for the initial implementation and deployment. In this work, we 
are extending our previous work [5] in SDX design to include 
both lower layer concepts (e.g. VLAN stitching) and upper 
layer concepts (e.g., application-based routing, load balancing, 
QoS, etc). We are designing and implement a software toolkit 
with APIs for application developers to tell the controller what 
demand they will introduce, at what times, and with what 
performance requirements, so the controller can plan/schedule 
the use of resources with prior knowledge of "when" and 
"what". The software developed in this project will be based on 
the SDX controller presented in [5] and available from GitHub 
[7]. 

This software is being actively used and extended, 
including ongoing work to deploy it on GENI [17]. The 

AtlanticWave-SDX project includes significant effort in 
“hardening” this software to make it production-ready and in 
extending it beyond the current Pyretic-based policy language 
to include programmable APIs for developers that support the 
specific application use cases identified here. 

IV. TOWARDS A POLICY API FOR SDX 

Before talking about SDX Policies, it is necessary to know 
what kind of applications can be deployed in an SDX. In [5] 
the authors proposed four applications: application-specific 
peering, inbound traffic engineering, wide-area load balancing 
and redirection through middle boxes. In general, the four 
applications match fields of the TCP/IP header and apply 
actions accordingly. However, in the LSST scenario the 
application needs to comply with certain latency and 
bandwidth requirements. These requirements cannot be defined 
using only fields of the TCP/IP header or the network topology 
status; the SDX controller requires external information such 
as SNMP, sFlow or perfSONAR [18] measurements. 

Taking into account the considerations stated previously, 
there are several candidates for a Policy API for SDX. In [5], 
the authors opted for Pyretic, a high level programming 
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language for SDN. Similarly, the ONOS controller introduced 
the concept of intents for network policy specification [19]. On 
the other hand, WE-Bridge [10] proposed JSON as its policy 
API. Other valid contenders for a Policy API are RESTful and 
XML interfaces. To illustrate what SDX policies would look 
like, we present three examples: application specific peering, 
on-demand circuit provisioning and bandwidth calendaring. 

A. Application Specific Peering 

Consider three Autonomous Systems (A, B and C) 
connected to an SDX. Both B and C are advertising the same 
IP prefix to A (See Figure 3). SDX’s Route Server decides best 
BGP path for these prefixes and advertises to A. In this 
example [20], routes advertised by B are preferred over C, for 
instance because of the AS-path length. For example, A might 
want its traffic destined for port 80 (dstport 80) to go to B, 
while traffic destined for port 4321 or port 4322 to go to C. 
This policy could be implemented as follows: 

if (dstport == 80) 

    forward to B 

else if (dstport == 4321 || dstport == 4322) 

    forward to C 

This may be implemented in Pyretic as follows: 

match(dstport = 80) >>  fwd(B) + 

match(dstport=4321/4322) >> fwd(C) 

B. On-Demand Virtual Circuit Provisioning 

This application provides the capability of provisioning 
virtual circuits on demand like Internet2’s AL2S and ESnet’s 
OSCARS. However, the SDX controller could take advantage 
of Network Monitoring Systems (NMS) such as perfSONAR 
to define Service Level Agreement (SLA) compliance and 
elastic WAN services, enriching the policies. In this scenario 
the SDX policy might look like: 

if (current_latency > SLA_latency) 

    secondary = findSecondaryPath() 

while (current_latency > SLA_latency) 

    LoadBalance(primary, secondary) 

The while loop represents a dynamic policy, this behavior 
could be represented using Pyretic Dynamic Policies, ONOS 
Intents, an active polling mechanism, or a reactive triggered 
signal coming from the NMS (e.g. SNMP Traps). Another 
option is to use state machines as proposed by Kim et al. in 
Kinetic [21]. 

C. Bandwidth Calendaring 

As proposed in [13], bandwidth calendaring will allow the 
SDX to reserve bandwidth for particular times. This is 
particularly relevant for the LSST because images are going to 
be sent each night. However, the circuits used could be in 
different timezones, making the reservation a more interesting 
problem. A possible representation of the policy is: 

scheduled_time = 21:00:00 GMT -5 

if (current_time == scheduled_time) { 

    BW = 90 // Bandwidth in Mbps 

    t = 60 // Reservation time 

    OnDemandVC(BW, t) 

} 

Once again, Pyretic Dynamic Policies, ONOS Intents, or 
Kinetic style state machines are the candidates for 
implementation. 

V. SECURITY CONCERNS FOR SDX 

Whenever we introduce new components in a network 
architecture, we also introduce new vulnerabilities; SDX is no 
exception. Considering the three types of SDX, we could say 
that the Layer-3 SDX will inherit all BGP vulnerabilities, the 
Layer-2 SDX will carry the same vulnerabilities of a shared 
Ethernet domain, and finally the SDN SDX will also introduce 
controller vulnerabilities. Such threats include DDOS attacks, 
attack inflation, exploitation of logically centralized 
controllers, compromised controllers (affecting the entire 
network), malicious controller applications, and negative 
impacts on recovery speeds [22]. Moreover, SDX introduces 
its own vulnerabilities as the SDX controller is a middle-man 
that every participant has to trust, and there is a possibility that 
some participants will declare policies that interfere with the 
proper function of other participants as a result, a trust 
relationship must be established between the applications 
loaded on the controller and the devices the controller manages 
[23,24]. 

The security issues with BGP are: prefix hijacking, TCP 
specific attacks, and manipulation of BGP attributes. Prefix 
hijacking occurs when an AS mistakenly or maliciously 
announces a prefix that has not been assigned to it. Some 
common TCP attacks are eavesdrop, man-in-the-middle, and 
DDoS (which can cause route flapping). Controllers are even 
more susceptible to TCP-based attacks since few controllers 
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actually use secure TCP connections [22]. Surprisingly, we 
observe that this issue occurs in spite of the OpenFlow protocol 
[25] allowing for an SSL secure channel between controller 
and switch. Already, several solutions (i.e., Resource Public 
Key Infrastructure or RPKI [26] and Secure BGP or S-BGP 
[27] ) have been proposed to make BGP more secure and 
eliminate prefix hijacking. In consideration of these security 
requirements, Bailey et al. [26] combined RPKI and 
CARDIGAN to enforce the consistency of BGP 
announcements with its forwarding rules. Subsequently, 
mechanisms must also be developed to establish trust between 
controllers in order to ensure proper forwarding or detect 
malicious elements before a misconfiguration can occur and 
damage the network [16]. Equally important is the need for fast 
recovery after a link failure to mitigate packet loss and 
maintain the 17 second intervals required for the LSST project. 
This requires that mechanisms be incorporated throughout the 
network to notify the SDX controller of failures, so it can flush 
its flow entries and select new routes [28].   

Concerning Layer-2 SDXs, LAN switches must be securely 
configured since switches in a shared Ethernet network are 
more vulnerable to malicious packets. A few examples of 
layer-2 attacks include MAC flooding, VLAN hopping, man-
in-the-middle (via MAC address spoofing), and hijacking [29]. 
Unfortunately, with SDN, detecting and mitigating these 
attacks now becomes the responsibility of the network 
controller. While we are working on methods for detecting 
rogue DHCP servers and spoofed MAC addresses within the 
SDN framework, such methods require additional compute 
resources from SDN controllers and may raise scalability 
concerns [30].  

Finally, from the Policy perspective, we would like for the 
policies of each SDX participant to only affect its own policy 
space. As a consequence, strong isolation is one of the main 
security requirements. Furthermore, each SDX controller 
becomes the middle-man that every participant has to trust. 
Thus, the controller functionality is a potential point of failure. 
For these reasons, controller resiliency and policy verification 
are desirable. Other countermeasures should include access 
control, attack detection, event filtering, firewall and IDPS, 
flow aggregation, forensics support, packet dropping, rate 
limiting, and shorter timeouts [22,23]. Regrettably, most of 
these countermeasures are not yet fully supported and work is 
ongoing to implement them [22,24]. 

VI. CONCLUSIONS AND NEXT STEPS 

While an exact definition for a Software Defined Exchange 
(SDX) has yet to reach a consensus, the LSST project presents 
a unique use case for furthering the development of SDX. In 
this paper, we discussed the AtlanticWave-SDX project’s 
goals, design, policy API, and security concerns. Once 
complete, the AtlanticWave-SDX will provide for an 
international long-haul network interconnecting Chile to the 
U.S. Additionally, with network programmability, LSST 
applications will be able to provision multiple paths 
dynamically and on demand, apply QoS, prioritize policies, 
and manipulate flows at multiple levels.  Furthermore, by using 
information made available by all network devices along the 
path, LSST applications will be empowered to choose 

preferred paths from multiple transit options between Chile and 
the U.S and control the telescope remotely. 
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