
AtlanticWave-SDX: An International SDX to Support

Science Data Applications

Joaquín Chung*, Jacob Cox*, Julio Ibarra^, Jerônimo Bezerra^, Heidi Morgan^, Russell Clark*, Henry Owen*

* Georgia Institute of Technology

* Atlanta, Georgia

^ Florida International University

^ Miami, Florida

Abstract—New scientific instruments that are being designed

and deployed in the coming years will dramatically increase the

need for large, real-time data transfers among scientists

throughout the world. One such instrument is the Large Synoptic

Survey Telescope being built in Chile that will produce 6.4 GB

images every 17 seconds. This paper describes an ongoing effort

to meet the demands of these large data scientific instruments

through the development of an international software defined

exchange point (SDX) that will meet the provisioning needs for

the scientific users. The specific planned and ongoing work in

SDX architecture is described with specific consideration for

policy specification and security.

Keywords—Software Defined Exchange; Science Data

Applications; SDN

I. INTRODUCTION

The Large Synoptic Survey Telescope (LSST) is a
proposed large-aperture, wide-field, ground-based telescope
that will scan half the sky continuously for 10 years. The 8.4-
meter telescope will be located in the Andes mountains in
Chile, taking a 6.4 GB image every 17 seconds. Each of those
images needs to be transferred to NCSA within approximately
five seconds so that processing can be completed in time to
distribute transient alert notifications to the worldwide
astronomical community within 60 seconds.

The international long-haul network interconnecting Chile
to the U.S. is a critical component of the LSST system design
because of the significance of LSST’s operational requirements
(e.g., the short interval between big data set transfers). The
LSST operation will be composed of two channels: a control
channel and a data channel. The control channel handles the
remote operation of the telescopes in Chile by NOAO in
Tucson, AZ.

These channels must be secure (i.e., encrypted), and they
require low latency, high priority, and low bandwidth. In every
17 second interval, the data channel is also responsible for
transmitting 6.4 GB images within 5 seconds. Such intervals
and timing constraints also require high bandwidth availability,
besides low latency and high priority. While the control
channel requires a few Mbps, the data channel burst is
estimated to be close to 90 Gbps.

To achieve the aforementioned requirements, the end-to-
end path must provide high resilience, low delay, multiple
paths, high bandwidth and an efficient control plane to act in
all status changes (i.e., port status, devices outages, etc). The
operational complexity of managing different administrative
domains, topologies, link technologies, devices, and
requirements is challenging when using traditional network
operations methodologies for provisioning, monitoring and
operating networks.

The AtlanticWave-SDX project aims to develop a
capability to support applications, such as the LSST, that have
intensive network resource requirements. In response to
LSST’s requirements for multiple diverse channels for control
and data transport, AtlanticWave-SDX will leverage the SDN
resources of the AmLight-ExP [1] network between the U.S.
and South America.

The end-to-end path for LSST will be composed of
different academic networks, some of them supporting SDN
and network programmability. Having information about
network resources and control for programmability will enable
LSST applications to react to network conditions in a more
efficient way, sometimes even anticipating issues. For
example, a link that will flap might be detected when a
CRC/loss number increases. With network programmability,
LSST applications will be able to provision multiple paths
dynamically and on demand, apply QoS and prioritization
policies, and manipulate flows at multiple levels. Using
information made available by all network devices on the path,
LSST applications will be able to select the preferred paths
from among several choices for sending its traffic from Chile
to the U.S, vice versa, and also control the telescope remotely.

As mentioned above, the LSST end-to-end path will be
provided by multiple networks, and in most cases, these
networks are interconnected by academic exchange points. To
achieve end-to-end programmability and control, all academic
exchange points along the path must support network-aware
applications. Fortunately, exposing network control capabilities
to applications within a single SDN domain is now feasible and
many academic networks (e.g., AmLight, Internet2, and EsNet)
provide this capability today. This is not the case for
applications that must span multiple domains. Most of the
current Academic Exchange Points are still using traditional

methodologies for forwarding (e.g., IP or MAC-based
forwarding) and control (e.g., a NOC team controlling network
devices through SSH and/or SNMP).

For applications that span multiple network domains, all
programmable network features mentioned before have to be
supported by all academic network exchanges along the path,
and with LSST as a use case, a few items are very explicit:

 Control Channel: due to its high priority profile, the
LSST application has to be able to apply QoS policies
to select the lowest latency port/link of the academic
exchange point. If multiple links are available, inbound
and outbound traffic engineering techniques will be
applied to guarantee redundancy and prioritization,
even over the Data Channel. As security is a must for
the control channel, if available, encryption has to be
enabled in the lowest level possible, and network
isolation must be guaranteed to avoid hijacks.

 Data Channel: the main characteristic of the Data
Channel is the bandwidth required, which is associated
with delay, jitter and tolerance to packet loss. Traffic
engineering and prioritization are also mandatory
features that all academic exchange points must
support. The LSST application will need to define what
links to use, create multiple paths and apply other load
balance approaches to guarantee its requirements.

An academic exchange point supporting these features is
called a Software-Defined Exchange, and it is considered the
next step in the network evolution following the SDN line of
thinking. This SDX must be open, programmable and resilient.
All its external interfaces must also be secure and support
standard interfaces to support different kinds of network-aware
applications.

II. BACKGROUND

Currently, there is no single, agreed upon definition of what
Software Defined Exchange (SDX) means. The spectrum of
definitions ranges from Networking Exchanges to Cloud
Service Exchanges. Moreover, below the networking SDX
definition, we can have: (1) Layer-3 SDX’s that provide
connectivity and routing between Autonomous Systems (AS)
as in the case of an Internet Exchange Point (IXP); (2) Layer-2
SDX’s for multi-domain Ethernet circuits; and (3) SDN SDX’s
to interconnect SDN islands. Likewise, the Cloud Service SDX
provides access to compute and storage resources from
different administrative domains. In the next sections, we
provide examples of recent Layer-3, Layer-2 and SDN SDX’s
as those are more relevant to the AtlanticWave-SDX project;
Cloud Service Exchanges could be seen as Federated Clouds.
In Figure 1, we show a taxonomy for the Network Exchanges
we consider.

A. Layer-3 SDX

As mentioned before, a Layer-3 SDX provides connectivity
between different Autonomous Systems. The main
characteristic of this kind of SDX is that a BGP process is
required to handle the exchange of BGP routes. The minimum

additional requirements are a SDN fabric and a SDN controller
to install flows between the participants. It is desirable that the
SDX has a Policy Manager to enrich the policies that can be
defined with BGP. Some examples of Layer-3 SDX’s are
SDN-IP [2], Cardigan [3,4] and SDX [5], which are described
in more detail next.

Lin et al. [2] proposed a solution to enable BGP peering
between SDN and non-SDN Autonomous Systems. To achieve
BGP peering, the centralized SDN control plane integrates a
BGP process; turning the entire SDN AS into a single BGP
router from the point of view of its peers. The solution was
developed as an application in the ONOS controller, and tested
using an emulated Mininet topology. Their experiments tested
how the number of Routing Information Base (RIB) entries
affects the memory incremental cost. The authors concluded
that SDN-IP can scale up to 10,000 RIB entries, processing
100 RIB updates per second.

Cardigan [3,4] is a distributed router based on RouteFlow
and a mesh of OpenFlow switches that are represented as a
single logical switch. The goal is to implement a SDN-based
distributed routing fabric. Cardigan’s datapath works in a full-
mesh, like router’s line cards and fabric cross-connects using
proactive flow installation. Cardigan was deployed connecting
the Research and Education Advanced Network of New
Zealand (REANNZ) to the Wellington Internet Exchange
(WIX), handling 1134 flows with a TCP performance of
800Mbps approximately.

Gupta et al. [5] proposed the design, implementation and
evaluation of SDX, to improve the network management
capabilities of BGP participants in an Internet Exchange Point
(IXP). The main idea behind SDX is to present a virtual SDX
switch to each BGP participant, so they can realize high level
tasks such as: application-specific peering, inbound traffic
engineering, wide-area load balancing, and redirection through
middle boxes all while ensuring isolation between the policies.
For this solution, each participant sends its policies to the SDX
controller; then the SDX engine compiles the individual
policies and installs a single set of policies on the SDX switch.
The authors claim that just adding a SDN switch and controller
to an IXP, as in the previous examples, is not enough to realize
a SDX. The first version of this SDX was implemented using
Pyretic [6] running on a POX controller, an enhanced version
is being implemented using Pyretic and a Ryu controller [7].

B. Layer-2 SDX

A Layer-2 SDX allows operators to create multi-domain
circuits; typically using Layer-2 technologies like Ethernet
VLANs. This scenario is mainly used in Research & Education
Networks such as Internet2 and ESnet. For instance, Internet2's
Advanced Layer 2 Service (AL2S) [8] allows network
operators to create their own Layer 2 circuits in the Internet2
AL2S backbone connection two or more endpoints. Similarly,
the On-demand Secure Circuits and Advance Reservation
System (OSCARS) [9] accomplishes the same goal in the
Department of Energy’s high-performance science network
ESnet.

C. SDN SDX

The design objective of the SDN SDX is to interconnect
SDN islands managed by different domains. The WE-Bridge
[10] is a mechanism to enable different SDN administrative
domains to peer and cooperate. WE-Bridge itself is not an
inter-domain routing protocol, but a platform to exchange basic
network information between different domains. The main goal
is to improve inter-domain routing by announcing domain-
views containing rich/fine-granularity information/policies, to
enable various inter-domain innovations based on network
information. This solution includes a network view
virtualization, and a virtual network format and distribution
using JSON. The peer relationships are established through a
peer-to-peer control plane and a modified version of Link
Layer Discovery Protocol (LLDP) to connect domain border
switches. Contrary to the peer-to-peer approach used by the
WE-Bridge, Mambretti et al. [11,12] proposed a centralized
Path Controller to manage the resources of federated controller
in order to interconnect federated SDN islands.

Similar approaches are the Service Provider SDN (SP-
SDN) [13] and MEF’s Lifecycle Service Orchestration (LSO)
[14]. Both proposals envision a service orchestration layer on
top on the SDN control layer, which span different
administrative domains. Some application examples presented
in these projects are: elastic WAN, network slices on-demand,
VPN circuits on-demand, and end-to-end Network-as-a-
Service.

D. SDX Characteristics

As we have seen, a SDX could exchange BGP routes,
Layer-2 circuits, computing and storage capacity. More
generally, an important characteristic of an SDX is its ability to
exchange networking, computing or storage resources in a
common point, between different administrative domains.
Furthermore, the capability to apply richer policies to the
exchange of these resources is another important characteristic
of the SDX. Finally, in terms of security, strong isolation of
constituent data and control interfaces is a desirable
characteristic of a SDX.

III. ACHITECTURE

The AtlanticWave-SDX project is working to extend the
SDX concept to a production deployment of a multi-domain
SDX involving three academic exchange points, which include
Southern Light; AMPATH and SoX, using the AtlanticWave
100G network. When fully deployed, AtlanticWave-SDX will
provide application users with an end-to-end service that
supports the traffic policy requirements of the application
across multiple Autonomous Systems and physical exchanges.

There are several alternatives for how such an end-to-end
capability can be provided. Figure 2 shows the proposed
topology with three options of deployment. Option 1 assumes a
single SDX controller that manages the entire IXP switch
fabric. While this approach is the simplest technical option it is
not ultimately viable in a distributed, multi-party environment.

Fig. 1 - Network SDX Taxonomy

Option 2 introduces an intermediate slice manager, such as
FlowVisor [15] or Flowspace Firewall [16], that allows
individual controllers to be handed a slice of the network
resources to be managed while isolating those resources from
others. Option 3 creates a hierarchy of controllers with a local
controller at each exchange being managed by a separate
higher level controller. We expect Option 2 to be the most
practical approach for the near term and intend to focus here
for the initial implementation and deployment. In this work, we
are extending our previous work [5] in SDX design to include
both lower layer concepts (e.g. VLAN stitching) and upper
layer concepts (e.g., application-based routing, load balancing,
QoS, etc). We are designing and implement a software toolkit
with APIs for application developers to tell the controller what
demand they will introduce, at what times, and with what
performance requirements, so the controller can plan/schedule
the use of resources with prior knowledge of "when" and
"what". The software developed in this project will be based on
the SDX controller presented in [5] and available from GitHub
[7].

This software is being actively used and extended,
including ongoing work to deploy it on GENI [17]. The

AtlanticWave-SDX project includes significant effort in
“hardening” this software to make it production-ready and in
extending it beyond the current Pyretic-based policy language
to include programmable APIs for developers that support the
specific application use cases identified here.

IV. TOWARDS A POLICY API FOR SDX

Before talking about SDX Policies, it is necessary to know
what kind of applications can be deployed in an SDX. In [5]
the authors proposed four applications: application-specific
peering, inbound traffic engineering, wide-area load balancing
and redirection through middle boxes. In general, the four
applications match fields of the TCP/IP header and apply
actions accordingly. However, in the LSST scenario the
application needs to comply with certain latency and
bandwidth requirements. These requirements cannot be defined
using only fields of the TCP/IP header or the network topology
status; the SDX controller requires external information such
as SNMP, sFlow or perfSONAR [18] measurements.

Taking into account the considerations stated previously,
there are several candidates for a Policy API for SDX. In [5],
the authors opted for Pyretic, a high level programming

Fig. 2 - AtlanticWave-SDX

language for SDN. Similarly, the ONOS controller introduced
the concept of intents for network policy specification [19]. On
the other hand, WE-Bridge [10] proposed JSON as its policy
API. Other valid contenders for a Policy API are RESTful and
XML interfaces. To illustrate what SDX policies would look
like, we present three examples: application specific peering,
on-demand circuit provisioning and bandwidth calendaring.

A. Application Specific Peering

Consider three Autonomous Systems (A, B and C)
connected to an SDX. Both B and C are advertising the same
IP prefix to A (See Figure 3). SDX’s Route Server decides best
BGP path for these prefixes and advertises to A. In this
example [20], routes advertised by B are preferred over C, for
instance because of the AS-path length. For example, A might
want its traffic destined for port 80 (dstport 80) to go to B,
while traffic destined for port 4321 or port 4322 to go to C.
This policy could be implemented as follows:

if (dstport == 80)

 forward to B

else if (dstport == 4321 || dstport == 4322)

 forward to C

This may be implemented in Pyretic as follows:

match(dstport = 80) >> fwd(B) +

match(dstport=4321/4322) >> fwd(C)

B. On-Demand Virtual Circuit Provisioning

This application provides the capability of provisioning
virtual circuits on demand like Internet2’s AL2S and ESnet’s
OSCARS. However, the SDX controller could take advantage
of Network Monitoring Systems (NMS) such as perfSONAR
to define Service Level Agreement (SLA) compliance and
elastic WAN services, enriching the policies. In this scenario
the SDX policy might look like:

if (current_latency > SLA_latency)

 secondary = findSecondaryPath()

while (current_latency > SLA_latency)

 LoadBalance(primary, secondary)

The while loop represents a dynamic policy, this behavior
could be represented using Pyretic Dynamic Policies, ONOS
Intents, an active polling mechanism, or a reactive triggered
signal coming from the NMS (e.g. SNMP Traps). Another
option is to use state machines as proposed by Kim et al. in
Kinetic [21].

C. Bandwidth Calendaring

As proposed in [13], bandwidth calendaring will allow the
SDX to reserve bandwidth for particular times. This is
particularly relevant for the LSST because images are going to
be sent each night. However, the circuits used could be in
different timezones, making the reservation a more interesting
problem. A possible representation of the policy is:

scheduled_time = 21:00:00 GMT -5

if (current_time == scheduled_time) {

 BW = 90 // Bandwidth in Mbps

 t = 60 // Reservation time

 OnDemandVC(BW, t)

}

Once again, Pyretic Dynamic Policies, ONOS Intents, or
Kinetic style state machines are the candidates for
implementation.

V. SECURITY CONCERNS FOR SDX

Whenever we introduce new components in a network
architecture, we also introduce new vulnerabilities; SDX is no
exception. Considering the three types of SDX, we could say
that the Layer-3 SDX will inherit all BGP vulnerabilities, the
Layer-2 SDX will carry the same vulnerabilities of a shared
Ethernet domain, and finally the SDN SDX will also introduce
controller vulnerabilities. Such threats include DDOS attacks,
attack inflation, exploitation of logically centralized
controllers, compromised controllers (affecting the entire
network), malicious controller applications, and negative
impacts on recovery speeds [22]. Moreover, SDX introduces
its own vulnerabilities as the SDX controller is a middle-man
that every participant has to trust, and there is a possibility that
some participants will declare policies that interfere with the
proper function of other participants as a result, a trust
relationship must be established between the applications
loaded on the controller and the devices the controller manages
[23,24].

The security issues with BGP are: prefix hijacking, TCP
specific attacks, and manipulation of BGP attributes. Prefix
hijacking occurs when an AS mistakenly or maliciously
announces a prefix that has not been assigned to it. Some
common TCP attacks are eavesdrop, man-in-the-middle, and
DDoS (which can cause route flapping). Controllers are even
more susceptible to TCP-based attacks since few controllers

Fig. 3 - SDX network topology [5]

actually use secure TCP connections [22]. Surprisingly, we
observe that this issue occurs in spite of the OpenFlow protocol
[25] allowing for an SSL secure channel between controller
and switch. Already, several solutions (i.e., Resource Public
Key Infrastructure or RPKI [26] and Secure BGP or S-BGP
[27]) have been proposed to make BGP more secure and
eliminate prefix hijacking. In consideration of these security
requirements, Bailey et al. [26] combined RPKI and
CARDIGAN to enforce the consistency of BGP
announcements with its forwarding rules. Subsequently,
mechanisms must also be developed to establish trust between
controllers in order to ensure proper forwarding or detect
malicious elements before a misconfiguration can occur and
damage the network [16]. Equally important is the need for fast
recovery after a link failure to mitigate packet loss and
maintain the 17 second intervals required for the LSST project.
This requires that mechanisms be incorporated throughout the
network to notify the SDX controller of failures, so it can flush
its flow entries and select new routes [28].

Concerning Layer-2 SDXs, LAN switches must be securely
configured since switches in a shared Ethernet network are
more vulnerable to malicious packets. A few examples of
layer-2 attacks include MAC flooding, VLAN hopping, man-
in-the-middle (via MAC address spoofing), and hijacking [29].
Unfortunately, with SDN, detecting and mitigating these
attacks now becomes the responsibility of the network
controller. While we are working on methods for detecting
rogue DHCP servers and spoofed MAC addresses within the
SDN framework, such methods require additional compute
resources from SDN controllers and may raise scalability
concerns [30].

Finally, from the Policy perspective, we would like for the
policies of each SDX participant to only affect its own policy
space. As a consequence, strong isolation is one of the main
security requirements. Furthermore, each SDX controller
becomes the middle-man that every participant has to trust.
Thus, the controller functionality is a potential point of failure.
For these reasons, controller resiliency and policy verification
are desirable. Other countermeasures should include access
control, attack detection, event filtering, firewall and IDPS,
flow aggregation, forensics support, packet dropping, rate
limiting, and shorter timeouts [22,23]. Regrettably, most of
these countermeasures are not yet fully supported and work is
ongoing to implement them [22,24].

VI. CONCLUSIONS AND NEXT STEPS

While an exact definition for a Software Defined Exchange
(SDX) has yet to reach a consensus, the LSST project presents
a unique use case for furthering the development of SDX. In
this paper, we discussed the AtlanticWave-SDX project’s
goals, design, policy API, and security concerns. Once
complete, the AtlanticWave-SDX will provide for an
international long-haul network interconnecting Chile to the
U.S. Additionally, with network programmability, LSST
applications will be able to provision multiple paths
dynamically and on demand, apply QoS, prioritize policies,
and manipulate flows at multiple levels. Furthermore, by using
information made available by all network devices along the
path, LSST applications will be empowered to choose

preferred paths from multiple transit options between Chile and
the U.S and control the telescope remotely.

REFERENCES

[1] J. Ibarra, J. Bezerra, H. Alvarez, M. Stanton, I. Machado, E. Grizendi,
and L. F. Lopez, “Benefits brought by the use of OpenFlow/SDN in the
AmLight intercontinental research and education network,” in
International Symposium of Integrated Management of Networks of the
IEEE, 2015, pp. 1–6.

[2] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-
Shabibi, K.-C. Wang, and J. Bi, “Seamless interworking of SDN and
IP,” in Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM - SIGCOMM ’13, 2013, no. Figure 2, p. 475.

[3] J. P. Stringer, C. Lorier, and N. Zealand, “Cardigan : Deploying a
Distributed Routing Fabric,” Proc. Second ACM SIGCOMM Work. Hot
Top. Softw. Defin. Netw. - HotSDN ’13, pp. 169–170, 2013.

[4] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey, C. N.
A. Corrêa, and C. E. Rothenberg, “Cardigan: SDN Distributed Routing
Fabric Going Live at an Internet Exchange,” in Computers and
Communication (ISCC), 2014 IEEE Symposium on, 2014, pp. 1–7.

[5] A. Gupta, E. Katz-Bassett, L. Vanbever, M. Shahbaz, S. P. Donovan, B.
Schlinker, N. Feamster, J. Rexford, S. Shenker, and R. Clark, “SDX,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562,
Aug. 2014.

[6] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming with Pyretic,” USENIX, vol. 38, pp. 40–47, 2013.

[7] “Ryu Based SDX Controller”. [Online]. Available:
https://github.com/sdn-ixp/sdx-ryu. [Accessed: 09-AUG-2015]

[8] “Advanced Layer 2 System”. [Online]. Available:
http://www.internet2.edu/products-services/advanced-networking/layer-
2-services/. [Accessed: 06-AUG-2015]

[9] "On-demand Secure Circuits and Advance Reservation System".
[Online]. Available: http://www.es.net/engineering-services/oscars/.
[Accessed: 06-AUG-2015]

[10] P. Lin, J. Bi, S. Wolff, Y. Wang, A. Xu, Z. Chen, H. Hu, and Y. Lin, “A
West-East Bridge Based SDN Inter-Domain Testbed,” IEEE Commun.
Mag., vol. 53, no. February, pp. 190 – 197, 2015.

[11] J. Mambretti, J. Chen, and F. Yeh, “Software-Defined Network
Exchanges (SDXs) and Infrastructure (SDI): Emerging Innovations In
SDN and SDI Interdomain Multi-Layer Services and Capabilities,” in
Science and Technology Conference (Modern Networking
Technologies) (MoNeTeC), 2014 First International, 2014, pp. 1–6.

[12] J. Mambretti, J. Chen, and F. Yeh, “Software-Defined Network
Exchanges (SDXs): Architecture, Services, Capabilities, and Foundation
Technologies,” in Proceedings of the 2014 26th International Teletraffic
Congress (ITC), 2014, pp. 0–5.

[13] J. Kempf, M. Körling, S. Baucke, I. Más, and O. Bäckman, “Fostering
Rapid, Cross-domain Service Innovation in Operator Networks through
Service Provider SDN,” in IEEE International Conference on
Communications, 2014, pp. 3070–3075.

[14] “The Third Network: Lifecycle Service Orchestration Vision”. [Online].
Available:
https://www.mef.net/Assets/White_Papers/MEF_Third_Network_LSO_
Vision_FINAL.pdf. [Accessed: 09-AUG-2015]

[15] R. Sherwood, G.Gibb, K. K. Yap, G .Appenzeller, M. Casado, N.
McKeown, and G. Parulkar, “Flowvisor: A network virtualization
layer”. OpenFlow Switch Consortium, Tech. Rep. 2009

[16] “FlowSpace Firewall”. [Online]. Available:
http://globalnoc.iu.edu/sdn/fsfw.html. [Accessed: 13-AUG-2015]

[17] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D.
Raychaudhuri, R. Ricci, I. Seskar, “GENI: A federated testbed for
innovative network experiments”, Computer Networks, vol. 61, pp. 5-
23, ISSN 1389-1286, 2014.

[18] “perfSONAR”. [Online]. Available: http://www.perfsonar.net/.
[Accessed: 05-AUG-2015]

[19] ONOS Wiki, “Intent Framework”. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Intent+Framework.
[Accessed: 12-AUG-2015]

[20] Coursera SDN Course, “SDX Assignment”. [Online]. Available:
https://docs.google.com/document/d/1wLF3RZEwMCRioyvaVl73kjXe
NgqIaA3LfUlGsI2mkb4/edit?usp=sharing. [Accessed: 10-AUG-2015].

[21] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable Dynamic Network Control,” pp. 1–11.

[22] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015.

[23] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high
performance network operating system,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 78–89.

[24] SDX Central, “SDN Security Challenges in SDN Environments”.
[Online]. Available:
https://www.sdxcentral.com/resources/security/security-challenges-sdn-
software-defined-networks/. [Accessed: 10-AUG-2015].

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFow: Enabling innovation

in campus networks," SIGCOMM Comput. Commun. Rev., vol. 38, no.
2, pp. 69-74, Mar. 2008.

[26] J. Bailey, D. Pemberton, A. Linton, and C. Pelsser, “Enforcing RPKI-
Based Routing Policy on the Data Plane at an Internet Exchange,”
HotSDN 2014, pp. 211–212, 2014.

[27] A. Boldyreva and R. Lychev, “Provable Security of S-BGP and other
Path Vector Protocols: Model, Analysis and Extensions,” ACM
Conference on Computer and Communications Security 2012, pages
541–552, 2012.

[28] Sharma, Sachin, Dimitri Staessens, Didier Colle, Mario Pickavet, and
Piet Demeester. "Enabling fast failure recovery in OpenFlow networks."
In Design of Reliable Communication Networks (DRCN), 2011 8th
International Workshop on the, pp. 164-171. IEEE, 2011.

[29] H. Altunbasak, S. Krasser, H. Owen, Grimminger, H. Huth, and J.
Sokol. “Securing Layer 2 in Local Area Networks. Networking - ICN
2005. P. Lorenz and P. Dini, Springer Berlin Heidelberg. 3421: 699-706.

[30] Giotis, K., Christos Argyropoulos, Georgios Androulidakis, Dimitrios
Kalogeras, and Vasilis Maglaris. "Combining OpenFlow and sFlow for
an effective and scalable anomaly detection and mitigation mechanism
on SDN environments."Computer Networks 62 (2014): 122-136.

