
Assessing the Quality of Flow Measurements
from OpenFlow Devices

Luuk Hendriks1, Ricardo de O. Schmidt1, Ramin Sadre2, Jeronimo A. Bezerra3 and Aiko Pras1

1University of Twente, the Netherlands
2Université Catholique de Louvain, Belgium

3Florida International University, USA

Abstract—Since its initial proposal in 2008, OpenFlow has
evolved to become today’s main enabler of Software-Defined Net-
working. OpenFlow specifies operations for network forwarding
devices and a communication protocol between data and control
planes. Although not primarily designed as a traffic measurement
tool, many works have proposed to use measured data from
OpenFlow to support, e.g., traffic engineering or security in
OpenFlow-enabled networks. These works, however, generally
do not question or address the quality of actual measured data
obtained from OpenFlow devices. Therefore, in this paper we
assess the quality of measurements in real OpenFlow devices
from multiple vendors. We demonstrate that inconsistencies and
measurement artifacts can be found due to particularities of
different OpenFlow implementations, making it impractical to
deploy an OpenFlow measurement-based approach in a network
consisting of devices from multiple vendors. In addition, we
show that the accuracy of measured packet and byte counts
and duration for flows vary among the tested devices, and in
some cases counters are not even implemented for the sake of
forwarding performance.

Index Terms—OpenFlow, traffic measurements, counters

I. INTRODUCTION

Although not a new concept, the paradigms of Software-
Defined Networking (SDN) and programmable networking
have recently gained lots of attention from academia and
industry. We can now find many works in the literature that
propose solutions for traffic engineering problems by imple-
menting SDN concepts and, as its main enabler, OpenFlow [1].
These solutions take advantage of management flexibility
brought by SDN and OpenFlow on decoupling the data and
control planes.

The evolution of OpenFlow is somewhat similar to that
of NetFlow, which started as a side-product from a traf-
fic forwarding technology to become one of today’s major
measurement tools. Right now, it is impossible to foresee
whether OpenFlow will ever evolve towards a measurement-
specific technology. The fact is, however, that many works
have been taking advantage of the potential to combine con-
trol, forwarding and measurement features all embedded in
a single technology. For example, works have been propos-
ing to use measured data from OpenFlow for a variety of
network management problems, such as capacity planning
and provisioning [2], [3], [4], [5], [6], energy-efficiency [7],
[8] and security [9], [10], [11]. The survey in [12] also
shows how comprehensive the use of traffic measurements in

SDN is. Most of the works in the literature have validated
their proposals by means of simulation, using tools such as
Mininet [13]. Moreover, many surveys such as [14], [15], [16],
[17], [18], [19], [20] provide an extensive overview of potential
future applications of SDN, mostly relying on some sort of
measurement data.

Due to the rapidly increasing interest and adoption of Open-
Flow, all the major vendors of networking devices have already
incorporated OpenFlow support into their routers and switches.
Moreover, new vendors have brought the first “pure Open-
Flow” devices to the market, i.e., OpenFlow-only switches.
Since it is still a new technology, we can expect that OpenFlow
implementations are not yet homogeneous amongst devices
from different vendors. Independent and immature implemen-
tations might give rise to certain artifacts that compromise the
quality of the measured data. This would ultimately invalidate
the practicality of many proposed solutions in the literature,
especially those aiming at large deployments on heterogeneous
infrastructure.

Contributions. In this paper we assess the quality of
measurement operations and measured data from various
OpenFlow devices deployed in controlled testbeds. We focus
on flow-level measurements. Our analysis is divided in two
parts, namely a qualitative and a quantitative assessment.
In the qualitative assessment (§ IV) we compare the mea-
surement capabilities of each tested device, also bringing up
peculiarities not documented by the respective vendors and
comparing our findings to what is defined in the pertinent
OpenFlow specifications regarding traffic measurements. In
the quantitative assessment (§ V), we study the accuracy of
measured data, i.e., per-flow packet and byte counts and flow
duration. We demonstrate that implementations of OpenFlow
in devices from different vendors have specific limitations and
artifacts, limiting the use of their measurements, especially in
a multi-vendor deployment. Alongside to our contributions, we
make all the developed tools used in our experiments publicly
available in online repositories.

It should be emphasized that the goal of this paper is to
assess available OpenFlow implementations, and not whether
a different measurement approach or technology, such as
described in [21], [22], would provide better results.

OpenFlow
Device

OpenFlow
Controller

OpenFlow
Protocol

search match
in table 0

found?
install table
flow entry

yes
no

apply actions
& update stats

decision

OFPT_PACKET_IN OFPT_FLOW_MOD

incoming packet outgoing packet

check expired
flow entries

any?

receive
and process

no
yes

OFPT_FLOW_REMOVED

request flow
entries stats

send stats

OFPT_MULTIPART

_REQUEST

receive
and process

OFPT_MULTIPART

_REPLY

Fig. 1. Summarized messages exchange between OpenFlow controller and device.

II. OPENFLOW BACKGROUND

OpenFlow has become today’s main enabler of SDN,
and many networking vendors have it implemented in their
devices, which can be either full OpenFlow or OpenFlow-
capable switches/routers. While the former are specifically
designed to operate OpenFlow, the latter support OpenFlow
in parallel to traditional packet forwarding.

Most switches support OpenFlow 1.0.0 [23] published in
2009, and this version is the mostly used in related work.
OpenFlow 1.5.0 [24] is currently the latest published standard
by the ONF1. However, few vendors have implemented higher
versions than OpenFlow 1.3.1 [25]. There are many crucial
differences between OpenFlow versions that directly influence
what kind of measured data we can obtain from the device.
Specifics of these differences are out of this paper’s scope.
Nonetheless, one example is the support for IPv6 in the match
fields from OpenFlow 1.2 onwards.

A. Flow Tables

OpenFlow devices must have at least one flow table. The
table contains flow entries that consist of, among others: 1) the
match fields specifying the set of properties that identify flows;
2) an action set with instructions on what to do with the
matching packets; 3) a priority to resolve conflicting situations
of multiple matches for a single packet; 4) the duration
telling for how long the entry has been active in the table;
5) packets and bytes counters; 6) timeouts to determine the
entry’s lifetime; and 7) the cookie which is a unique identifier
for the flow entry and set by the controller.

Forwarding instructions can propagate a packet through a
pipeline of flow tables before a terminal action is taken (drop
or forward the packet). Table pipelining is, however, out of
this paper’s scope.

The match fields of a flow entry define what a flow is.
Flows can be defined by the traditional 5-tuple of NetFlow
(source and destination IP addresses, source and destination
ports, and transport protocol), or by a single field, such as
the VLAN ID. If an incoming packet matches more than one
entry, the entries’ priorities define which one to be considered.

1https://www.opennetworking.org/

B. Protocol Messages

OpenFlow messages are used for communication between
controllers and devices, and some of them are directly related
to traffic measurements. Figure 1 shows a summarized scheme
of messages used for traffic measurements.

For every incoming packet the device checks for a matching
flow entry. If found, the entry’s counters are updated and
actions are taken as defined in the action set. Otherwise,
the packet hits the wildcard entry (“matching all” rule).
Typically, the action set for the wildcard rule is to send an
OFPT_PACKET_IN message to the controller. The controller
understands that no matching was found and tells the switch
what to do with the incoming packet. The controller replies
to the switch with an OFPT_FLOW_MOD message of type
OFPFC_ADD that contains instructions for the new entry that
will match the next packets for the same flow. Existing entries
can also be modified by the controller with the same message
but with type OFPFC_MODIFY.

When an entry’s timeout expires, the OpenFlow de-
vice removes the entry from the flow table and sends an
OFPT_FLOW_REMOVED to the controller, containing the en-
try’s packet and byte counts. This message is only sent if
explicitly requested; when adding or modifying an entry, the
controller must set the OFPFF_SEND_FLOW_REM flag in the
OFPT_FLOW_MOD message.

With an OFPT_MULTIPART_REQUEST message the con-
troller can at any time request for statistics of individual flows,
aggregates, tables, ports, among others. The OpenFlow device
replies with an OFPT_MULTIPART_REPLY message to the
controller containing the requested statistics.

C. Flow Timeouts

The controller can specify hard and a idle timeouts for
individual flow entries using the OFPT_FLOW_MOD message.
The hard timeout defines the maximum lifetime of a flow entry
and when expired the entry, regardless of being active or not,
is removed from the flow table. The idle timeout defines the
maximum interval between the last matching packet and the
removal of the entry from the table due to flow inactivity.
Timeouts of “infinity” are typically set to the wildcard rule.

TABLE I
TESTED OPENFLOW DEVICES

Device Firmware Used OF version

Pica8 P3295 PicOS 2.6 1.3
HP 2920-24G WB.15.17.0007 1.3
Brocade CES 5.8.0bT183 1.3
Brocade MLXe 5.7.0cT163 1.0
Juniper MX240 13.3R6.5 1.0

data
OpenFlow

OpenFlow
device

source

sink

controller

Fig. 2. Measurement setup topology.

III. EXPERIMENTAL SETUP

A. Tested OpenFlow Devices

We carried out experiments on multiple testbeds consisting
of OpenFlow devices from different vendors (Table I). We
included two devices from Brocade in our experiments; the
Brocade CES is an Ethernet switch, and the MLXe is a router
and, hence, one could expect better support for traffic account-
ing and measurements from the latter. We used OpenFlow 1.3
in the Pica8, HP and Brocade CES devices. By the time of our
experiments Pica8 firmware with support for OpenFlow 1.4
was still on beta. For Brocade MLXe and Juniper devices
we used OpenFlow 1.0. The MLXe support to OpenFlow 1.3
would have required a hardware update, and Juniper only
supported this version of OpenFlow. The HP can be configured
to operate either in Hardware (HW) or Software (SW) mode,
which are not complementary.

B. Network Setup

The devices in Table I were all assessed using the same
topology shown in Figure 2. The source and the sink (virtual)
machines are used to, respectively, send and receive traffic
through the OpenFlow device, and the controller (virtual)
machine is connected to the management port of the OpenFlow
device. This setup gives us full control over the traffic transfer:
at the source machine we used tcpreplay to replay traffic
traces to the sink, where we used tcpdump to check whether
all traffic sent was correctly received. All the links are 1 Gbps
and no concurrent traffic was present in the testbeds during
the experiments.

C. Measurement Approach

All traces replayed in our experiments are pcap files
consisting of synthetic traffic generated using Scapy (Python
library). Synthetic traces allowed for variation of traffic charac-
teristics to assess the specific OpenFlow features of interest. To
validate the flow data obtained from OpenFlow, we developed

TABLE II
COMPOSITION OF TESTED MATCH FIELDS

ID fields

5-t nw src, tp src, nw dst, tp dst, nw proto
5-tv6 ipv6 src, tp src, ipv6 dst, tp dst, ipv6 proto
icmp nw src, nw dst, nw proto, icmp type, icmp code

icmp6 ipv6 src, ivp6 dst, nw proto, icmp type, icmp code
ipv6 ipv6 src, ipv6 dst, ipv6 label

Abbreviations:
nw src, nw dst, nw proto: IPv4 source, destination and protocol
ipv6 src, ipv6 dst, ipv6 proto: IPv6 source, destination and protocol
ipv6 label: IPv6 flow label specification
tp src, tp dst: source and destination ports
icmp type, icmp code: ICMP type and code

a script that uses the flow entry cookie to identify unique
flows within the replayed traces. Note that we had full control
over the flow table during the measurements on the devices,
i.e., no rules other than ours were installed. Our scripts and
example traces are publicly available at https://github.com/
ut-dacs/openflow-accuracy-measurement.

We used proactive and reactive measurements to assess the
quality of measurement operations and data from OpenFlow
devices. For proactive measurements we used ovs_ofctl2, a
command-line tool from Open vSwitch to monitor and manage
OpenFlow devices. Using ovs_ofctl on the controller we
requested flow statistics from the OpenFlow device. For the
reactive approach we implemented a controller on top of
Ryu3 that receives and processes OFPT_FLOW_REMOVED
messages sent by the device when a flow entry’s timeout
expires. Our controller implementation is available at https:
//github.com/ut-dacs/openflow-passive.

To avoid an overwhelming number of OFPT_PACKET_IN
and OFPT_FLOW_MOD exchanges between controller and
OpenFlow devices, at the start of a trace replay we preemp-
tively preloaded the flow table with entries matching all flows
within the trace. This ensured that the communication between
controller and device to not be a source of inaccuracy for the
traffic measurements.

IV. QUALITATIVE ANALYSIS

Our goal of our qualitative analysis is to understand to what
extend relevant OpenFlow features to measurements are sup-
ported and correctly implemented by the various devices. In
particular, we looked into key matching (§ IV-A), flow entry’s
timeouts (§ IV-B), flow entry’s overlap checking (§ IV-C), and
counters (§ IV-D).

A. Flow Key Matching

OpenFlow gives flexibility on the flow key definition (match
fields). We assessed the support of OpenFlow devices for

2http://openvswitch.org
3http://osrg.github.io/ryu/

https://github.com/ut-dacs/openflow-accuracy-measurement
https://github.com/ut-dacs/openflow-accuracy-measurement
https://github.com/ut-dacs/openflow-passive
https://github.com/ut-dacs/openflow-passive
http://openvswitch.org
http://osrg.github.io/ryu/

TABLE III
SUMMARY OF THE QUALITATIVE ANALYSIS

Device Match fields composition Timeouts Entry overlap Statistics counters
5-t 5-tv6 icmp icmp6 ipv6 Idle Hard checking Packets Bytes Duration

Pica8 P3295 X X X X X X X X X X

HP 2920-24G X X X X X X X X

HP 2920-24G HW X X

HP 2920-24G SW X X X

Brocade CES X X X X X X X X

Brocade MLXe X X X X X X

Juniper MX240 X X X X X X X X

various keys, as shown in Table II. The combinations 5-t
and 5-tv6 are typical 5-tuple key for, respectively, IPv4 and
IPv6. Similarly, we define the ICMP keys icmp and icmp6. In
addition, we define the ipv6 key using IPv6 labels. The IPv6-
specific combinations were tested only for devices running
OpenFlow 1.3 (Table I).

To perform this measurement we loaded flow tables with
entries containing specific keys using ovs_ofctl. We then
sent matching packets through the device and checked the
flow statistics to verify if the number of matched packets
for each entry corresponded to the number of packets sent.
Table III shows the results of this experiment. Pica8, HP and
Brocade CES accepted the insertion of all key compositions
and correctly matched packets to these entries. Brocade MLXe
and Juniper devices accepted the IPv4-only keys 5-t and icmp,
also correctly matching their respective packets.

B. Flow Timeouts Support

Flow timeouts is one of the main concepts in Net-
Flow/IPFIX, and they can be used to define the temporal
granularity of measurement data. Shorter timeouts can provide
a better view on traffic dynamics at smaller timescales [26].
We used the reactive measurement approach to assess if
OpenFlow devices support and properly implement timeouts.
We loaded the flow table with entries, setting values for both
hard and idle timeouts. The flow entries were added with the
flag OFPT_SEND_FLOW_REM, which explicitly requests the
device to send an OFPT_FLOW_REMOVED to the controller
once a flow entry is removed due to timeout expiration. We
then simply waited for the entry’s timeout expiration.

Table III summarizes the support for timeouts on the tested
devices. Pica8, HP and Juniper support both hard and idle
timeouts and also correctly implement them. Brocade devices,
however, do not implement any of the timeouts specified by
OpenFlow. Timeouts are acknowledged in the Brocade devices
specifications, and OFPT_FLOW_MOD messages containing
timeout information are successfully processed by the devices.
However, the provided timeout values are simply ignored.

By not implementing timeouts, a device transfers the re-
sponsibility for removing expired entries to the controller
(or an application running on top of the controller). The
controller has to somehow keep track of the time/duration

of each installed flow entry in the switch and actively re-
move entries using an OFPT_FLOW_MOD message of type
OFPFC_DELETE (or OFPFC_DELETE_STRICT). This adds
complexity to the controller and increases the number of
messages exchanged between controller and device, since the
controller must request flow statistics from the device and send
delete messages.

Obviously, the lack of timeouts also has an impact on poten-
tial measurement applications. The OFPT_FLOW_REMOVED
message contains important information on the expired flow,
such as counters and duration. Without this message, a mea-
surement application has to periodically contact the OpenFlow
device, which results in additional overhead.

Finally, there could also exist devices that actually support
timeouts but do not support flow removed messages. In such
cases, the controller might lose measurement data if the
request for statistics reaches the OpenFlow device after the
expiration of flow entry’s timeouts. Nonetheless, none of the
tested OpenFlow devices showed this behavior.

C. Flow Entry Overlap Checking

OpenFlow specifies ways to avoid duplicate flow en-
tries, what helps ensuring the correctness of the flow
measurements. This is achieved by setting the flag
OFPFF_CHECK_OVERLAP in OFPT_FLOW_MOD messages,
requesting the device to check for duplicates before adding a
new entry.

To test the overlap checking support on OpenFlow devices,
we used ovs_ofctl to send two add-request messages (with
the same match fields and priority) to the device with the
overlap check flag set. For the first request, the device is
expected to simply add the entry. For the second request,
however, the device was expected to react on the duplicate
entry.

Table III shows that all OpenFlow devices imple-
ment the overlap checking. However, some of them
do not fully adhere to the OpenFlow specification. If
the add request contains the check overlap flag and
an overlapping entry exists, the new entry should not
be added to the flow table and an OFPT_ERROR_MSG
message of type OFPET_FLOW_MOD_FAILED and code
OFPFMFC_OVERLAP should be sent to the controller. All

the tested devices successfully generate this error message for
overlapping entries.

Pica8 makes a distinction between overlapping and identical
entries (entries with completely identical fields), which is not
in accordance with the OpenFlow specification. In case of an
identical entry with overlap flag, Pica8 ignores the flag and
resets the flow duration of the existing entry, but keeps the
packet and byte counters unchanged.

Most devices correctly implement the OpenFlow specifi-
cation in case the add-request message does not contain the
check overlap flag. Overlapping entries are simply added,
while identical entries are handled differently depending on the
OpenFlow version. Pica8, HP and Brocade CES correctly reset
flow duration and keep counters untouched (v1.3). The only
exception is the HP device in software mode: it resets both
duration and counters. Brocade MLXe behaves as expected in
OpenFlow 1.0; in the presence of the check overlap flag the
existing identical entry should be removed from the table and
the new entry added (resetting both duration and counters).

D. Flow Counters Support

The OpenFlow specification defines that for each entry in a
flow table, packet and byte counters should be maintained. The
implementation of these counters is, however, vendor-specific.
In previous experience [27] we showed that although a value
was returned for packet counter upon request, the counter was
effectively not implemented. The device would actually count
the number of bytes and then roughly estimate the packet
number; dividing the number of bytes by 100 (one hundred).

To assess if counters are properly implemented in the
OpenFlow devices, we added flow entries using ovs_ofctl
and sent traffic through the device. The counters values were
retrieved by proactive and reactive measurements. Table III
summarizes our findings.

Since our first experience with Pica8 (with PicOS 2.3
firmware), the vendor has changed the support for mea-
surement operations of their OpenFlow devices. The packet
counter has been removed and the byte counter is now
providing more accurate counts than previously observed [27].
For HP, in the software mode only byte counters are available
and in the hardware mode both packets and bytes are counted.
Brocade MLXe counts packets and bytes, but Brocade CES
only bytes. Finally, Juniper implements both counters. The
presence of a counter does not guarantee correctness of counts,
because hardware limitations and implementation decisions by
the vendors affect accuracy (§ V-A).

OpenFlow also specifies flow entry duration, which is of
major importance for applications that use measured data to
estimate, for example, packet (pps) or bytes rates (bps). All the
tested devices keep track of the flow entry duration. However,
the correctness of the duration value depends on how it is
obtained (§ V-B).

V. QUANTITATIVE ANALYSIS

In this section, we present and discuss our findings resulting
from the quantitative assessments of measurements from the

TABLE IV
EXTRA BYTES PER PACKET

Device Extra bytes

Pica8 P3295 4
HP 2920-24G 0
Brocade CES 24
Brocade MLXe 4
Juniper MX240 4

OpenFlow devices. The accuracy of the packet and byte
counters are tested (§ V-A), as well as the granularity of the
timeout mechanisms (§ V-B).

A. Accuracy of Flow Entry Counters

As shown in § IV-D, all tested devices support per-flow
packet counters, byte counters, or both. To assess the accuracy
of the counters, we sent traffic from the source to the sink
machines and retrieved statistics afterwards at the controller
by the proactive and reactive methods described in § III-C.
The following steps were performed:

1) Create a traffic trace in pcap format, a file in ovs format
containing the flow definitions, and a “ground truth” file
containing the packets and bytes counts for each flow.

2) Preload the flow definitions (flow entries) to the flow
table of the device and replay the traffic trace. (Note
that the maximum number of preloaded flow entries was
empirically defined for each device.)

3) After the trace has been replayed, retrieve the statistics
from the device and compare with the ground truth.

In addition, the traffic arriving at the sink machine was
collected to verify that the packets were forwarded correctly.

We first noticed that several devices systematically count
more bytes per packet than the actual Ethernet frame size,
independently of the characteristics of the incoming traffic (see
Table IV). For example, the Brocade CES counts 24 bytes per
packet extra, which can result in a significant error of the
byte counter if the traffic consists of a large number of small
packets. The reason for this behavior is not known to us and an
inspection of the traffic collected at the sink machine showed
no difference to the traffic sent from the source machine.

Another source of error is the way counters are updated.
Some devices internally update their counters by a periodically
executed process. This results in inaccuracies if a device is
queried for statistics between two updates. All but the Pica8
and the HP device in software mode showed this behavior,
with varying update intervals. The HP switch in hardware
mode is, by default, configured to an update interval of 20 s.
The minimum configurable value is 1 s. Such as value can
drastically decrease the negative impact on the accuracy.

For the other devices, no update interval is documented.
Using the proactive approach, we queried the devices every
second for a minute upon completion of replaying a trace
in order to determine the time where the resulting statistics
become static, i.e., counters are not updated anymore. For the

Brocade devices, up to 30 s of delay was observed, and for
Juniper a maximum of approximately 10 s. In software mode,
the HP switch bases its forwarding rate upon a configuration
option, limiting the rate at 100 pps by default. Replaying traces
at higher rates causes incomplete forwarding and incomplete
statistics. We measured the ratio of forwarded packets at the
default 100 pps and the maximum configurable 2000 pps and
observed that the switch is not capable of forwarding at the
maximum rate (see Figure 3). This might be considered rather
a performance problem than a measurement accuracy problem,
but as the software mode provides more statistics (i.e., packet
counts), one should be aware of this limitation.

Furthermore, two devices showed incorrect statistics caused
by other problems. The Brocade CES does not count traffic
sent immediately after adding the flow entries to the flow
table. We investigated this by adding a single flow entry,
assuring it has been installed by querying for statistics, and
replaying a trace with matching packets and with constant
packet size and packet rate. After receiving all packets at the
sink machine, the statistics were retrieved, showing inaccurate
counters. Using a flow of 10,000 packets sent at 1000 pps,
we observed a mean of 1231 missing packets with a standard
deviation of 409 over 16 runs. In terms of time, this equals to
approximately 1.2 seconds of lost counting.

Another artifact on the Brocade CES are flows without any
statistics set (packet and byte counters are zero). Even when
loading less than the maximum number of flow entries in the
table, this behavior was observed, but not in a deterministic
way: multiple runs of the same trace resulted in either com-
plete statistics or in a constant number of entries with missing
statistics. In the latter case, not always the same flow entries
were affected. However, it always concerned consecutively
inserted flows, that means, after ordering the obtained flows
by their respective cookie value, all flows missing statistics
formed a single block. We believe this might be caused
by a bug, or some sort of heuristic to trade-off forwarding
performance against statistics accounting.

Lastly, the Juniper showed erratic behavior related to the
maximum size of the flow table. We measured the number
of installable 5-t flow entries, which resulted in a mean of
6325 entries, but with a standard deviation of 442 over 15 runs.
It seems that flows are added in a non-deterministic way,
with no constant maximum of entries. Replaying traces with
6000 flows resulted in missing statistics for all flow entries.
However, counters showed deviations from the ground truth
even for smaller flow table sizes. Attempts with 1500 flows
resulted in a mean of 3% of packets that were forwarded but
not accounted for, when the trace was replayed at 1000 pps.
At 5000 pps that ratio increased to 8.7%. In addition to
inaccuracies of counters, the device had problems matching
packets to installed flow entries, resulting in sending unneces-
sary PACKET_IN messages to the controller.

B. Accuracy of Flow Durations

Besides the packet and byte counters, OpenFlow statistics
also report flow duration. As this duration can be used to

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700

ra
ti
o

 o
f

fo
rw

a
rd

e
d

 p
a

c
k
e

ts

pps rate

(a) 100 pps

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 1500 2000 2500 3000 3500

ra
ti
o

 o
f

fo
rw

a
rd

e
d

 p
a

c
k
e

ts

pps rate

(b) 2000 pps

Fig. 3. Ratio of forwarded packets on the HP switch in software mode.
Observe the different ranges of the y-axes. The vertical line at 100 pps and
2000 pps, respectively, shows the configured packet forwarding rate.

calculate rates for a certain flow, e.g., bps or pps, any
inaccuracy will directly affect those calculations. Unlike Net-
Flow/IPFIX, flow duration in OpenFlow is not based on the
packet observation times. Instead, the duration specifies how
long the flow entry has been in the flow table.

One way to emulate the NetFlow/IPFIX style of flow dura-
tion is to use OpenFlow’s idle timeout mechanism. However,
since the timeout is included in the flow duration, any anoma-
lies in the behavior of the timeout mechanism would directly
influence the accuracy of the duration estimation. To assess
this, we installed flow entries with an idle timeout of 60 s
and collected the OFPT_FLOW_REMOVED messages, without
sending any traffic through the OpenFlow device. The obtained
durations should, therefore, be equal to the idle timeout, as no
packet was matched for the flow entry. For the devices that
support flow expiration, i.e., all but the Brocades, the mean
and standard deviation of the inaccuracy were calculated over
10 runs. For Pica8, the reported duration was 271 ms longer
than the actual timeout (standard deviation 24 ms). For the HP
switch, the reported duration was 604 ms longer in hardware
mode, and 609 ms in software mode. The standard deviation in
hardware mode however was higher, with 296 ms compared
to 186 ms for software mode. The Juniper showed 486 ms
extra, with a standard deviation of 385 ms. We also tried other
timeout values and obtained similar means and deviations.

A possible explanation could be that the timeout is im-
plemented as a periodic process scanning the flow table for
expired entries. In that case, the Pica8 switch would scan the
table with a period of around 500 ms, twice as frequently as the
HP and Juniper devices. Of course, another explanation could
be that the used timers simply do not have millisecond preci-
sion. Similar problems have been observed on NetFlow/IPFIX
devices by us and other researchers (see § VII).

Interestingly, the stability of the timeout mechanism seems
to depend on the workload of the device. When tested with
traffic, especially the HP and Juniper devices showed devia-
tions of several seconds. This indicates (as one could expect)
that the table-scanning process runs with a lower priority than
the forwarding engine.

VI. DISCUSSION

A major challenges for operators today is to deploy a
measurement-based application on top of an OpenFlow-based
network consisting of devices from multiple vendors. Differ-
ences between OpenFlow implementations are so vast that they
might compromise operations relying on measured data. In the
following, we discuss our findings in this context.

On the devices tested by us, the counter updates are a
potential source of inaccuracy for packet and byte counters.
As explained in § V-A, the time interval between counter
updates might cause flow entries to be reported with outdated
statistics, i.e., statistics proactively queried by the controller do
not include the packets forwarded since the last counter update.
The same is true for the statistics sent to the controller when
a flow entry expires due to a timeout. In order to avoid this
problem, the controller would have to synchronize its statistics
requests with the counter updates on the OpenFlow device —
a hardly feasable solution in multi-vendor scenarios where the
update interval is vendor specific.

In addition, the inconsistent number of extra bytes requires
model-specific corrections when processing counter values
from different OpenFlow devices, even for devices from the
same vendor (see Table IV).

The expiration check is another periodical operation that
might influence the quality of measured data. As explained
in § V-B, the idle timeout can be used to obtain an estima-
tion of the flow duration similarly to NetFlow/IPFIX. This
is, however, only possible if the OpenFlow device supports
timeouts (which is not the case for the Brocade devices we
tested). Even if the timeouts work correctly, the estimation of
the flow duration might suffer from variations caused by the
expiration check process. As we have shown, these variations
are not only vendor-specific but also depend on the workload,
making a possible correction very difficult. A very important
remark about the flow entry duration is that it can only be
used to estimate the actual flow duration if the entry has been
inserted to the flow table when the first packet was seen for
the flow (i.e., using an add request in response to a packet-in
message). Otherwise, the time between the entry installation
and the first packet of the flow is added to the duration.

Finally, we also observed erratic behavior for some of the
tested devices that can impact the quality of measurements. For
example, the Brocade CES often reported byte counters set to
zero. Another erratic behavior was observed for the Juniper
router, where OFPT_PACKET_IN messages were sent to the
controller even though matching flow entries were already
preloaded into the flow table. We believe that these issues
are bugs and will likely be fixed in next firmware versions.

VII. RELATED WORK

Although OpenFlow was not proposed as a measurement
solution, there are numerous publications and foreseen SDN
applications where the statistics provided by an OpenFlow-
enabled device are used for network measurements and mon-
itoring (see the surveys listed in § I). The applications them-
selves are out of the scope of this paper. However, it is crucial

to note that, to the best of our knowledge, the quality of
the statistics provided by OpenFlow devices is not studied
in existing work. For example, [28] proposes a tool named
OpenNetMon to monitor networks by polling edge switches
at an adaptive rate. The (relatively small) differences between
results for bandwidth measurements reported by the tool and
a packet-based ground truth are explained by binning effects
due to the interaction between the counter update frequency of
the switch and the polling frequency of the tool. A systematic
assessment of the accuracy of the counters is not made.

In the context of network measurement, it is quite natural
to compare OpenFlow to NetFlow/IPFIX. Indeed, most of
the papers discussed in [12] explicitly refer to NetFlow or
IPFIX when discussing the advantages of their OpenFlow-
based solutions. Since OpenFlow and NetFlow/IPFIX flow
monitoring are implemented in similar ways (using flow tables,
active and inactive timeouts, etc.), it is interesting to see how
NetFlow/IPFIX-enabled devices behave in terms of accuracy.
Due to the extreme popularity of NetFlow, the performance
of such devices has been extensively studied by researchers.
Problems caused by an insufficient timestamp resolution in
the flow metering and exporting process have been analyzed
in [29] and [30], and methods have been proposed to mitigate
their impact on the measurement accuracy. Artifacts found
in flow data from Juniper devices have been studied in [31].
In [32], flow-enabled devices have been compared and various
artifacts identified. There are various reasons for such artifacts.
For example, some switches have a hardware-switching engine
as well as a software-switching engine and, depending on
which engine is used to switch a particular flow, different
information is available to the flow metering process. Other
artifacts are caused by resource constraints: in order to make
the export process more efficient, the flow table is only
scanned for terminated flows in intervals of several seconds,
resulting in deviations from the configured timeout values.

VIII. CONCLUSIONS

Many works in the recent literature propose to join traffic
measurements with the flexibility of network management
both enabled by OpenFlow. These works do not, however,
address the quality of measured data one can obtain from real
OpenFlow devices, limiting the validation of their respective
proposals to simulated and controlled environments.

In this paper we have systematically assessed the quality of
flow-level traffic measurements from real OpenFlow devices.
Note that instead of finding the best device, our goal was to
raise awareness of the difficulties imposed by early and imma-
ture implementations of OpenFlow by vendors. These imple-
mentations do not fully adhere to OpenFlow specifications and
are not consistent among themselves. We have identified many
pitfalls with the tested devices that directly or indirectly impact
the quality of measured data. One of our major observations
is that the inaccuracies and artifacts found are not consistent
among devices. That is, different sets of problems are found on
different OpenFlow devices, and some even between devices
from the same vendor. Network operators should be aware

of the measurement limitations of their OpenFlow devices.
Furthermore, the differences between vendor implementations
restrict the deployment of a measurement-based application in
a multi-vendor OpenFlow-based network.

Nonetheless, SDN and OpenFlow are still relatively new
concepts and technologies and, hence, the situation is expected
to improve in the foreseeable future. A strong indicator that
OpenFlow implementations by vendors are persistently evolv-
ing is the large number of new firmware releases in the last few
months, containing bug fixes and new features. Furthermore, in
addition to ONF, there are lots of efforts on the standardization
of SDN and OpenFlow, such as IRTF SDNRG4 and several
documents being published within the IETF community.

ACKNOWLEDGEMENTS

We thank Sebastian Seeber (UniBW), RNP, ANSP, and
RedClara. Ricardo de O. Schmidt, Luuk Hendriks and Aiko
Pras’ work is partially supported by the EU FP7 Mobile Cloud
Networking (#318109), EU FP7 FLAMINGO NoE (ICT-
318488). Jeronimo A. Bezerra’s work is supported by NSF
IRNC-ProNet Americas Lightpaths (ACI-0963053).

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[2] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild,” in 11th USENIX conference on Hot topics in
management of Internet, cloud, and enterprise networks and services,
ser. Hot-ICE 2011, 2011, pp. 1–6.

[3] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks,” in 11th International Conference on
Passive and Active Measurement, ser. PAM 2010, 2010, pp. 201–210.

[4] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring Network Utilization with Zero
Measurement Cost,” in 14th International Conference on Passive and
Active Measurement, ser. PAM 2013, 2013, pp. 31–41.

[5] P. Sun, L. Vanbever, and J. Rexford, “Scalable Programmable Inbound
Traffic Engineering,” in ACM SIGCOMM Symposium on SDN Research,
ser. SORS 2015, 2015, pp. 1–7.

[6] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and D. Walker, “HONE: Joint
Host-Network Traffic Management in Software-Defined Networks,”
Journal of Network and Systems Management, vol. 23, no. 2, pp. 374–
399, 2015.

[7] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. Mckeown, “ElasticTree: Saving Energy in Data
Center Networks,” in 7th USENIX conference on Networked systems
design and implementation, ser. NSDI 2010, 2010, pp. 1–16.

[8] C. Donato, P. Serrano, A. de la Oliva, A. Banchs, and C. J. Bernardos,
“An OpenFlow Architecture for Energy-Aware Traffic Engineering in
Mobile Networks,” IEEE Network, vol. 29, no. 4, pp. 54–60, 2015.

[9] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS Flooding Attack
Detection Using NOX/OpenFlow,” in 35th IEEE Conference on Local
Computer Networks, ser. LCN 2010, 2010, pp. 408–415.

[10] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang, “NetFuse:
Short-circuiting Traffic Surges in the Cloud,” in IEEE International
Conference on Communications, ser. ICC 2013, 2013, pp. 3514–3518.

[11] Y. Zhang, “An Adaptive Flow Counting Method for Anomaly Detection
in SDN,” in 9th ACM conference on Emerging networking experiments
and technologies, ser. CoNEXT 2013, 2013, pp. 25–30.

[12] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software Defined
Network Traffic Measurement: Current Trends and Challenges,” IEEE
Instrumentation & Measurement Magazine, vol. 18, no. 2, pp. 42–50,
2015.

4https://irtf.org/sdnrg

[13] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, ser. Hotnets 2010, 2010, pp. 1–6.

[14] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Computer Networks,
vol. 71, pp. 1–30, 2014.

[15] F. Hu, Q. Hao, and K. Bao, “A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[16] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and Layered Taxonomy
of Software-Defined Networking,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[17] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using
OpenFlow: A Survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 493–512, 2014.

[18] B. A. A. Nunes, M. Mendonça, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[19] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[20] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on
Software-Defined Networking,” IEEE Instrumentation & Measurement
Magazine, vol. 17, no. 1, pp. 27–51, 2015.

[21] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in 10th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI 2013, 2013, pp. 29–42.

[22] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
Resource Allocation for Software-defined Measurement,” in ACM SIG-
COMM conference, 2014, pp. 419–430.

[23] Open Networking Foundation, “OpenFlow Switch Specification – Ver-
sion 1.0.0,” https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf,
2009, online. Accessed Aug. 2015.

[24] ——, “OpenFlow Switch Specification – Version 1.5.0,” https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf, 2014,
online. Accessed Aug. 2015.

[25] ——, “OpenFlow Switch Specification – Version 1.3.1,”
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf,
2012, online. Accessed Aug. 2015.

[26] R. de O. Schmidt, A. Sperotto, R. Sadre, and A. Pras, “Towards Band-
width Estimation using Flow-level Measurements,” in 6th International
Conference on Autonomous Infrastructure, Management and Security,
ser. AIMS 2012, 2012.

[27] R. de O. Schmidt, L. Hendriks, A. Pras, and R. van der Pol, “OpenFlow-
based Link Dimensioning,” in Workshop on Innovating the Network
for Data-Intensive Science (INDIS), International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
2014, 2014.

[28] N. L. M. van Adrichen, C. Doerr, and F. A. Kuipers, “OpenNet-
Mon: Network monitoring in OpenFlow Software-Defined Networks,”
in IEEE/IFIP Network Operations and Management Symposium, ser.
NOMS 2014, 2014, pp. 1–8.

[29] B. Trammell, B. Tellenbach, D. Schatzmann, and M. Burkhart, “Peeling
Away Timing Error in NetFlow Data,” in 12th International Conference
on Passive and Active Network Measurement, ser. PAM 2011, 2011, pp.
194–203.

[30] J. Kögel, “One-way Delay Measurement based on Flow Data: Quan-
tification and Compensation of Errors by Exporter Profiling,” in 25th
International Conference on Information Networking, ser. ICOIN 2011,
2011, pp. 25–30.

[31] I. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot, “Uncovering
Artifacts of Flow Measurement Tools,” in 10th International Conference
on Passive and Active Network Measurement, ser. PAM 2009, 2009, pp.
187–196.

[32] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, and A. Pras, “Measurement
Artifacts in NetFlow Data,” in 14th International Conference on Passive
and Active Measurement, ser. PAM 2013, 2013, pp. 1–10.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

