

OpenWave: U.S.-Brazil 100G Experimental Alien Wave

14th Annual ON*VECTOR Photonics Workshop February 25-26, 2015 CallT2, UCSD

Julio Ibarra
Florida International University
Principal Investigator
julio@fiu.edu

OpenWave 100G project

- OpenWave is a project (award# 1341895) under NSF IRNC ProNet AmLight award for U.S.-Latin America connectivity
- OpenWave is deploying an experimental 100G alien wave between the U.S. and Brazil
- OpenWave is an experiment consisting of 2 major goals:
 - Understanding how to deploy a 100G trans-oceanic alien wave on a highly constrained operational undersea cable system
 - Understanding how to operate a 100G alien wave with a total span of approximately 10,000km
- Broader Impacts:
 - Potential of increasing demand for upgrading production undersea optical fiber systems (Spectrum-as-a-Service?)
 - Facilitating academic access to submarine spectrum
 - Brings a new resource to U.S.-Latin American science and education
 - Preparing for future science demands, such as the Large Synoptic Survey Telescope (LSST),
 - which is expected to push to the limits of 100Gb/s network connections

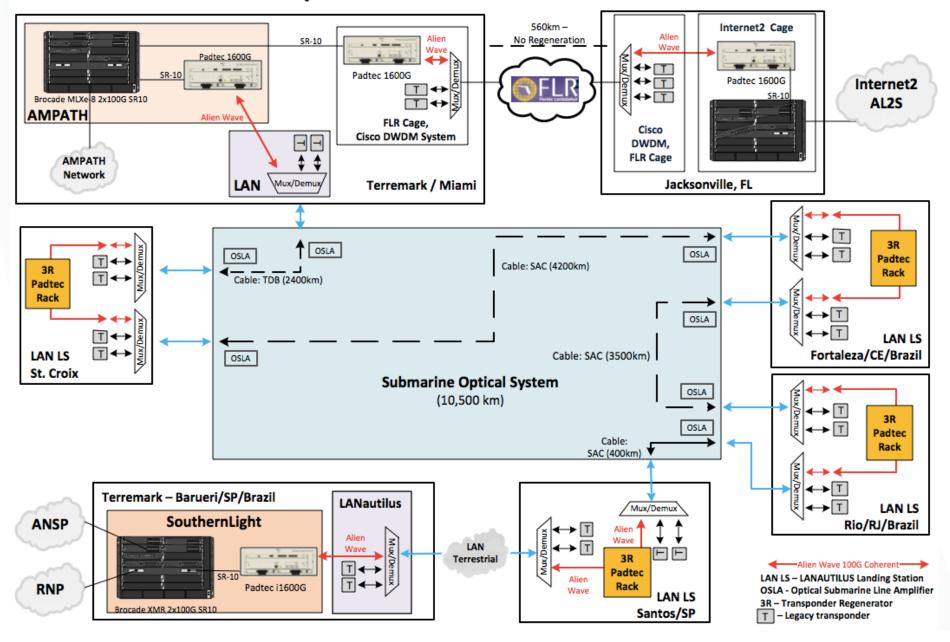
OpenWave Project Partners

- NSF and the IRNC program
- Florida International University via the AmLight Project
- Brazil via the ANSP and RNP
- PadTec, optical equipment manufacturer in Brazil
- Latin American Nautilus, submarine cable system operator
- Florida LambdaRail (FLR)
- Internet2

OpenWave Challenges

- 100G alien wave technology has not been field tested in this type of environment
- Complexity of LAN's undersea cable system
 - Real-world submarine cable system that is 14+ years old with many amplifiers
 - Complex overlays using multiple digital modulation schemes
 - 10G waves with Non-return-to-zero (NRZ) modulation at 100GHz, 50GHz and 33GHz spacing
 - 40G & 100G waves in an overlay using Dual Carrier (2C) Dual Polarization (DP) & Binary Phase Shift Keying (BPSK) modulation at 50GHz spacing
 - Overcoming non-linear phase noise effects
 - Optical Signal to Noise Ratio (OSNR), Bit Error Rate (BER), Chromatic Dispersion, etc.

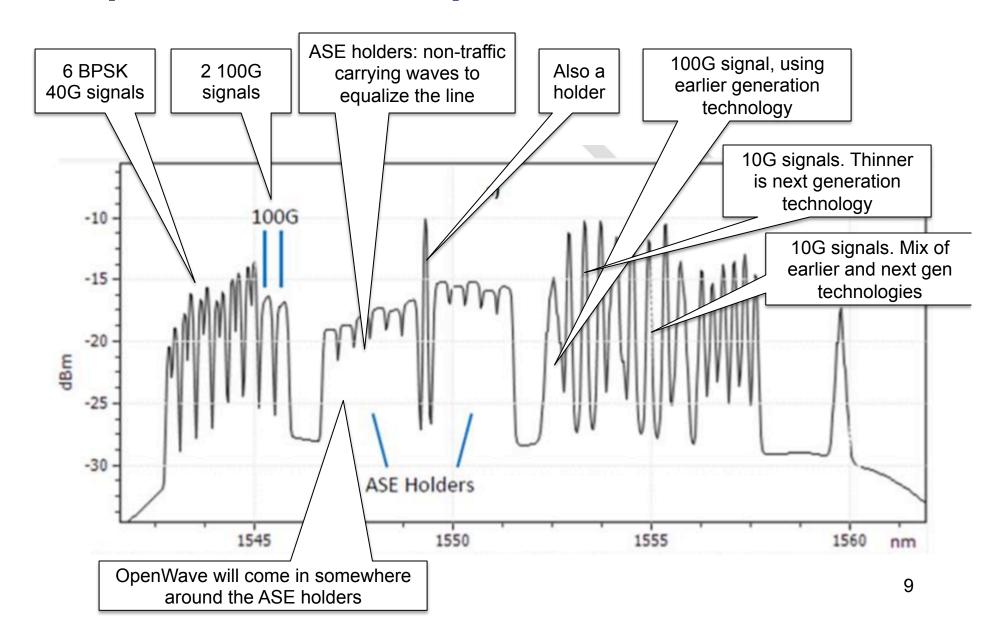
OpenWave System Characteristics

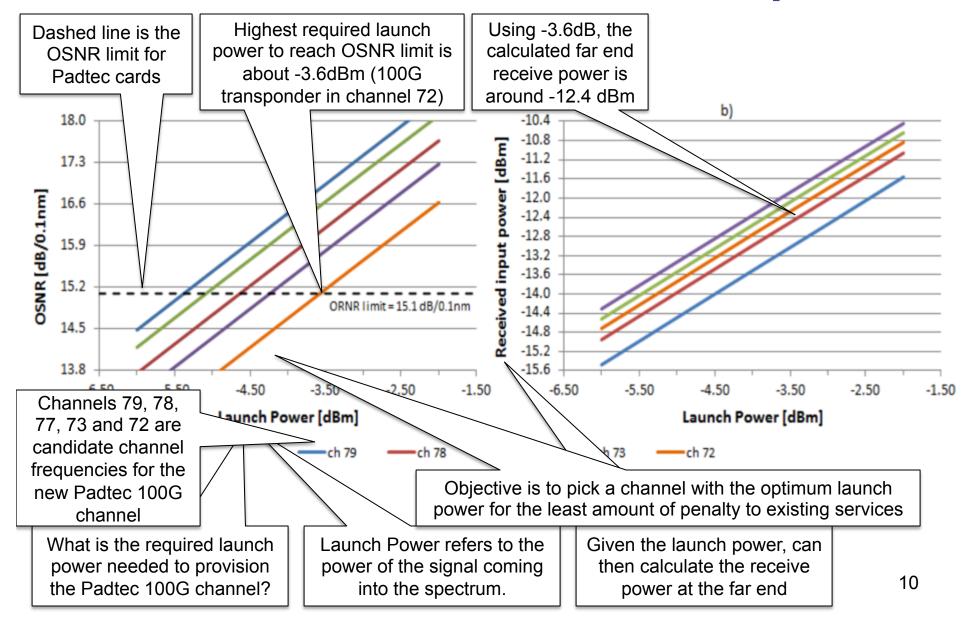

- Four spans in the path
 - Longest is measured at 4,200km
- 100G Alien Wave will be deployed using Padtec's devices with LAN's hybrid repeatered line
 - New Alien Wave deployment in the SAC cable
 - Differential Quadrature Phase Shift Keying (DQPSK)
 - Coherent Detection technology
- Use of a 50GHz channel, plus some guard channels of 50Ghz
 - Number of guard channels depends on results of simulation and lab tests
 - Prevents Non Linear Effects on production waves

Critical Success Factors

- Overcoming non-linear phase noise effects
 - Bit Error Rate (BER)
 - Sensitivity to Optical Signal-to-Noise Ratio (OSNR)
 - Chromatic Dispersion
- Q-value performance margin
 - How well the wave is performing in relation to BER and OSNR
 - Must account for aging and faults on the fiber
- St. Croix Fortaleza span is most challenging
 - -4,200km
 - Experiment hinges on success with this span

OpenWave Network Design


OpenWave & 100G AtlanticWave - 2014


Modeling Methodology

- Modeling St. Croix Fortaleza segment
 - Spectrum use of the real network
 - OSNR for the new 100G channel as a function of the launch power for various channel frequency
- Results

Representation of spectrum in real network

OSNR as a function of launch power

Results

- 9 additional channels could be supported
 - Each one providing capacity of 9x100 GbE
- Estimate is based upon
 - the available frequencies on the system
 - 100GHz and 50GHz guard bands for 100G and 10G respectively
- Results support the deployment of the 100G
 Padtec solution

Timeline

Activity	Duration	Start	Finish
Equipment Installation	17 days	2/18/15	3/12/15
Transponders Shipment	15 days	3/2/15	3/20/15
Sao Paulo – Cotia Link	4 days	3/3/15	3/6/15
Cotia – Santos Link	4 days	3/9/15	3/12/15
Santos – Rio Link	6 days	3/13/15	3/20/15
Rio – Fortaleza Link	8 days	3/23/15	4/1/15
Fortaleza – St. Croix Link	19 days	4/2/15	4/28/15
St. Croix – Miami Link	8 days	4/29/15	5/8/15
Sao Paulo – Miami Link Validation	2 days	5/11/15	5/12/15
Acceptance Testing	20 days	5/13/15	6/9/15
OpenWave Experimenting Regime	136 days	6/10/15	12/16/15

AmLight SDN and OpenWave

- 4 x 10G links and two topologies
 - SDN ring: Miami-São Paulo-Chile-Miami
 - 20 Gbps of total capacity
 - Full OpenFlow and network virtualization support
 - MPLS ring: Miami-São Paulo-Miami
 - · 20 Gbps of total capacity
 - Layer 2 support
- OpenWave 100 Gbps between São Paulo and Miami
 - Part of the SDN domain
 - Focused on experimentation
- 140 Gbps aggregate capacity expected by June
- 100G to AL2S from Miami

OpenWave Testbed Environment: Bring your experiments!

- For the OpenWave Experiment period:
 - Colocation Space (power, space, cooling) for hosting servers and other devices
 - Multiple 10G ports available
 - 100G link between Internet2, AltanticWave XPs, and AMPATH
 - 100G link between AMPATH and Brazil (using OpenWave)
 - Network Slices support (AmLight SDN) with OpenFlow 1.0 (1.3 soon)

Focused Technical Workshop: International OpenFlow/SDN Testbeds

- Hosted by Florida International University and Internet2, March 31-April 2, 2015
- Objective:
 - Bring together network, software, and data management experts to discuss International OpenFlow/SDN Testbeds
- Outcome includes:
 - Developing best practices for challenge areas
 - Expanding community knowledge base
 - Providing resources for improved testbed development and operations
- https://meetings.internet2.edu/2015-ftwinternational-openflow-sdn-testbeds/

Thank You!

- NSF OpenWave, AmLight, OSDC-PIRE, CC-NIE, CC*IIE, AMPATH, AtlanticWave infrastructure, science application support, education, outreach and community building efforts are made possible by funding and support from:
 - National Science Foundation (NSF) awards ACI-0963053, ACI-1140833, ACI-1246185, ACI-1341895, ACI-1357928, OISE-1129076
 - FAPESP, ANSP grant no. 2008/52885-8
 - Rede Nacional de Ensino e Pesquisa (RNP)
 - Association of Universities for Research in Astronomy (AURA)
 - Florida International University
 - Latin American Research and Education community
 - The many national and international collaborators who support our efforts

OpenWave and AmLight Topology

- 4 100G segments (future):
 - St. Croix (STX)-Fortaleza 4,200km
 - Fortaleza-Rio, 3,500km
 - Rio-Santos, 400km
 - Miami-STX, 2,400km
- ANSP: 2x 10G links
 S Paulo Miami
 - (W) via Santiago (LAN)
 - (E) direct (Telefonica)
- RNP: 2x 10G links
 S Paulo Miami
 - (W) direct (Telefonica)
 - (E) via Rio de Janeiro &Fortaleza (LAN)(+ redundant terrestrial links)

Methodology

- Separate the Miami São Paulo path into 4 spans:
 - a. Miami to St. Croix (2,400km)
 - b. St. Croix to Fortaleza/BR (4,200km)
 - c. Fortaleza to Rio de Janeiro (3,500km)
 - d. Rio de Janeiro to Santos (400km)
- Modeling span (b): (approx. 30 days)
 - (b) is the longest span
- Simulation of (b): (approx. 30-45 days)
- Laboratory tests of (b): (approx. 30 days)
- Repeat for (a), (c), (d) and (e) –
 (up to 15 days each)
- Evaluation of the results by all partners
- Deploy the 100G in the SAC cable

