

Benefits brought by the use of OpenFlow/ SDN in the AmLight intercontinental research and education network

IFIP/IEEE IM2015

May 12th 2015

Ottawa, Canada

Jeronimo Bezerra <jbezerra@fiu.edu>

Who we are

AMPATH:

- Academic IXP in Miami
- Interconnects all Latin America RENs to other RENs in the world

SouthernLight:

- Academic IXP in Sao Paulo
- Interconnects all Brazilian RENs and RedCLARA

AmLight:

 Academic network that connects SounthernLight to AMPATH and other RENs in the world

Partners: FIU, NSF, ANSP, RNP, RedCLARA, REUNA and AURA

AmLight Today

A set of 4 x 10G links with two topologies:

 SDN Ring (Miami-Sao Paulo-Santiago)

 MPLS Ring (Miami-Brazil-Miami)

 Later this year: 100G link between Sao Paulo and Miami

Mutual Redundancy

Connections:

- 13 RENs
- > 1000 Universities and Research Centers

AmLight Before SDN

- Configuration based on static VLANs
- Multiple instances of per-VLAN RSTP
- Mutual redundancy created wth:
 - IEEE 802.1ad (QinQ) + L2VPNs

Why has AmLight moved towards SDN?

Key motivations:

Improving operations efficiency

Introducing network programmability

Motivation 01: Improving Operations Efficiency

Amount of layer 2 circuits requested and networks involved makes the provisioning a complex process:

- Some circuits involve up to seven different networks
 - High level of coordination required with diverse network teams
- Multiple technologies involved
 - From Layer 1 to MPLS
- Some circuits took weeks or even months to be provisioned

 The lack of support for network programmability compromises network-aware demos and applications

 Researchers could only view the network status (SNMP)

Scenario Deployed (1/2)

Activated Openflow 1.0 + Hybrid Ports

- A. Improving operations efficiency:
 - Internet2's OESS
 - OSCARS IDCP
 - OpenNSA NSI
- B. Introducing network programmability
 - Internet2's Flow Space Firewall

Scenario Deployed (2/2)

Northbound: Users' APIs

Southbound API: OpenFlow 1.0

Physical Layer

Findings (1/2)

A. Improving operations efficiency

	Average time to provision a new circuit		Avg. number of e-mails exchanged	
Domains Involved in the path	before SDN	with SDN	before SDN	with SDN
RNP, ANSP, RedClara, AmLight, Internet2, ESNET	5 days	< 5 minutes	10	0
Other networks (if IDCP or NSI supported)	12 days	< 5 minutes	65	0
Other networks with NO IDCP or NSI - < 3 networks in the path	5 days	-	10	-
Other networks with NO IDCP or NSI - > 3 networks in the path (Americas)	12 days	-	65	-
Other networks in other continents not using IDCP or NSI	45 days	-	100	-

Findings (2/2)

B. Introducing network programmability

	Network Access and Programmability		
	Before SDN	After SDN	
Network View	SNMP	SNMP and Openflow	
Provisioning Defined by			
the User	-	Full Openflow access through a dedicated slice	
Multipath experiments	Static paths offered		
Flow controlled hop-by-			
hop	-		

Network programmability is the main achievement of this project:

• Network-aware applications will have AmLight as a real platform for innovation

Some Lessons Learned

- Some legacy protocols and old switching line cards could increase the complexity
 - LACP, Counters, Ethertypes
- Out-of-band/Control Plane network could be challenging
- Convergence methodology has to be improved
 - Specially in long-haul links

Future

- Explore and add new features related to troubleshooting and security
- Create a Software-Defined Internet Exchange (SDX) involving AmLight and AtlanticWave
- Migrate to Openflow 1.3
 - Metering and improve the network convergence

Benefits brought by the use of OpenFlow/ SDN in the AmLight intercontinental research and education network

www.sdn.amlight.net

IFIP/IEEE IM2015

May 12th 2015

Ottawa, Canada

Jeronimo Bezerra <jbezerra@fiu.edu>