

Use of SDN in the AmLight intercontinental research and education network

TNC15 Networking Conference 15-18 June 2015 Porto, Portugal

Julio Ibarra, Principal Investigator
Heidi Morgan, Co-Principal Investigator
Jeronimo Bezerra, Chief Network Engineer

Who we are

AMPATH:

- Academic International Exchange Point (IXP) in Miami, Florida
- Interconnects Latin America and Caribbean RENs to other RENs in the world

SouthernLight:

- Academic IXP in São Paulo, Brazil
- Interconnects all Brazilian RENs and RedCLARA

AmLight:

 International network links that connect the U.S. to Latin **America**

Partners: FIU, NSF, ANSP, RNP, RedCLARA, REUNA and AURA

40G

AmLight Today

A set of 4 x 10G links with two topologies:

- SDN (Layer 2) Ring:
 - Miami-São Paulo-Santiago-Miami (green)
- MPLS (Layer 3) Ring:
 - Miami-Fortaleza-Rio-São Paulo-Miami (yellow)

 Later this year: 100G link between São Paulo and Miami

Mutual Redundancy

Connections:

- 13 RENs
- > 1000 Universities and Research Centers

AmLight Before SDN

- Configuration of circuits was based on static VLANs
 - High degree of coordination between multiple network teams
- Multiple instances of per-VLAN RSTP were used
 - Interoperability issues
 - Constrained redundancy with network operators
- Redundancy between rings was created with:
 - IEEE 802.1ad (QinQ) + L2VPNs
 - Additional ports to implement redundancy across rings

Why then move towards SDN?

Key motivations:

Improving operations efficiency

Introducing network programmability

Motivation 01: Improving Operations Efficiency

Requests for Layer2 circuits was increasing

- Provisioning process was complex
- Some circuits involved up to seven different networks
 - Requiring a high level of coordination
 - Engaging diverse network teams
- Multiple technologies were involved
 - From Layer 1 to MPLS
- Some circuits took weeks or even months to be provisioned

- Lack of support for network programmability limited applications
 - Little to no support for network-aware applications
- Researchers could only view the network status (SNMP)

Scenario Deployed (1/2)

Activated OpenFlow 1.0 + Hybrid Ports

- A. Improving operations efficiency:
 - Internet2's OESS
 - OSCARS IDCP
 - OpenNSA NSI
- B. Introducing network programmability
 - Internet2's Flow Space Firewall

Scenario Deployed (2/2)

Findings (1/2)

A. Improving operations efficiency

	Average time to provision a new circuit		Avg. number of e-mails exchanged	
Domains Involved in the path	before SDN	with SDN	before SDN	with SDN
RNP, ANSP, RedClara, AmLight, Internet2, ESNET	5 days	< 5 minutes	10	0
Other networks (if IDCP or NSI supported)	12 days	< 5 minutes	65	0
Other networks with NO IDCP or NSI - < 3 networks in the path	5 days	-	10	-
Other networks with NO IDCP or NSI - > 3 networks in the path (Americas)	12 days	-	65	-
Other networks in other continents not using IDCP or NSI	45 days	-	100	-

Findings (2/2)

B. Introducing network programmability

	Network Access and Programmability		
	Before SDN	After SDN	
Network View	SNMP	SNMP and Openflow	
Provisioning Defined by			
the User	-	Full Openflow access through a dedicated slice	
Multipath experiments	Static paths offered		
Flow controlled hop-by-			
hop	-		

Network programmability is the main achievement of this project:

• Network-aware applications will have AmLight as a real platform for innovation

Some Lessons Learned

- Legacy protocols and old switching line cards have limitations
 - LACP, Counters, Ethertypes
 - Increased complexity of the deployment
 - Dedicated additional ports to work around these limitations
- Out-of-band/Control Plane network could be challenging
- Convergence methodology has to be improved
 - Specially in long-haul links

Out-of-band Control Plane Network

- Out-of-band network built for transmission of OpenFlow control messages between Controller and OpenFlow devices
- RedCLARA IP backbone was used for this solution

Future

- Explore and add new features related to troubleshooting and security
- Create a Software-Defined Internet Exchange (SDX)
 - involving AmLight, and
 - inter-connecting the U.S. and Brazil
- Migrate to Openflow 1.3
 - Metering and improve the network convergence

Thank You!

- NSF AmLight-ExP, AtlanticWave-SDX, OpenWave, AmLight, OSDC-PIRE, CC-NIE, CC*IIE, AMPATH infrastructure, science application support, education, outreach and community building efforts are made possible by funding and support from:
 - National Science Foundation (NSF) awards ACI-1451018, ACI-1451024,
 ACI-0963053, ACI-1140833, ACI-1246185, ACI-1341895, ACI-1357928,
 OISE-1129076
 - FAPESP, ANSP grant no. 2008/52885-8
 - Rede Nacional de Ensino e Pesquisa (RNP)
 - Association of Universities for Research in Astronomy (AURA)
 - Florida International University
 - Latin American Research and Education community
 - The many national and international collaborators who support our efforts

Use of SDN in the AmLight intercontinental research and education network

www.sdn.amlight.net

TNC15 Networking Conference

15-18 June 2015

Porto, Portugal

Julio Ibarra Julio@fiu.edu

Principal Investigator