

AURA Networking: Many Use Cases Jan 2017

R. Chris Smith AURA Observatory in Chile CTIO/Gemini/SOAR/LSST

C: AURA report Apr20

AURA Backbone Users & Use

- Large users
 - NOAO/CTIO (DECam!)
 - Gemini (Remote ops!)
 - SOAR (Remote observing)
 - LSST (currently site mon.)
 - Carnegie (La Serena)
 - NRAO/ALMA (Santiago)
 - GMT (pending)

- Smaller Users
 - SMARTS
 - PROMPT (x8 now)
 - GONG
 - ALO
 - WHAM
 - LCOGTN
 - KASI/KMTnet
 - ASAS-SN
 - mEarth (Harvard)
 - "EvryScope"/Prompt
 - T80S (Brazil)

Key Use Case #1: Data Transfer

- Big Cameras, Big Data
 - NOW: DECam producing ~500Gb to 1TB/night
 - Near-real time reduction and analysis
 - Has moved from "goal" to "requirement"
 - Science example: Gravity Wave outburst detection
 - FUTURE: LSST!
- Small telescopes, Big Data
 - KASI/KMTnet 1.6m w/ four 9Kx9K CCDs
 - Evryscope & ASAS-SN covering whole sky with multiple mega-pixel cameras

Key Use Case #2: Remote Observing

- SOAR
 - MSU, UNC are almost always remote
 - Brazilian and NOAO remote observations becoming more common
- Gemini
 - Over-the-shoulder observing offered
 - Mtn-base critical: no one in dome at night
- CTIO
 - DECam remote observing under development
- SARA
 - Fully remote: mtn to user critical

Key Use Case #3: Robotic Telescopes

- Network connection critical
 - PROMPT has been doing it for years
 - LCOGTN with active (every 15 min) rescheduling
 - ASAS-SN with rapid alerts of SNe discovered
- Likely to become more common with LSST follow-up opportunities

Key Use Case #4: Coordination

- Real-time communication and coordination is critical in transient follow-up
 - Target of Opportunity observing (ToO)
 - E.g., Gemini can get on target within minutes, and data is available in archive within minutes of being taken
- Scientific importance growing for all observatories
 - Opportunities for Gravity Wave follow-up
 - "Uncommon" transients identified by LSST

Key Use Case #5: Data Access

- Archives are the starting point for a growing fraction astronomical research
- Key assets in Chile
 - ALMA archives for users
 - Chilean site under consideration
 - LSST Data Access Center
 - To host data products in La Serena

AURA Network Backbone

- Current Three segments
 - Summits (Tololo+Pachón) to Base (La Serena)
 - Microwave link @ 2 x 155 Mbps
 - Traffic has outgrown this solution
 - Plus Two additional Radio Links
 - Cambium 300Mbps, Ubiquity 300-400 Mbps
 - Eagerly awaiting fiber links
 - La Serena to Santiago
 - REUNA @ 4Gbps (preliminary LSST step up)
 - Santiago to U.S. RENs
 - AmLight+LAUREN @ 1Gbps (up to 10Gbps)

New Links for AURA/LSST:

- Outline of needs
 - "Segment 1" = Mountain-La Serena
 - LSST >200Gbps, Others >10Gbps
 - "Segment 2" = La Serena-Santiago
 - LSST >100Gbps, Others >10Gbps
 - "Segment 3" = Santiago-U.S.A.
 - LSST >200Gbps, Others >10Gbps

Key Features of Solutions

- Meets demanding requirements for LSST Operations
- Meets AURA facilities current needs, with significant room for expansion (including those of affiliates like Carnegie, GMT, etc.)
- Meets AURA's commitment to Chileans to make best effort to invest in bandwidth through Chilean research and educational network infrastructure

and

• Work with REUNA to create an important segment in its national high-speed network strategy, including possible links to northern international observatories