

2016 GLIF Meeting Miami, Sep 29th 2016

AmLight backbone transition to SDN: Celebrating the second anniversary

Julio Ibarra, PI Heidi Morgan, Co-PI Donald Cox, Co-PI Jeronimo Bezerra, Chief Network Engineer

Outline

- What is AmLight?
- AmLight SDN launch
- Motivations

AmLight

- AmLight is a project of the National Science Foundation at FIU
 - Award# ACI-0963053
- Started in 2010
- It's goal is to support the needs of U.S.-Latin America research and education communities to advance discovery and scholarship

All links represented in this maps have 10Gbps of capacity

AmLight Express and Protect (AmLight-ExP)

• AmLight-ExP is a project (2015-2020) of the National Science Foundation

- Award# ACI-1451018

- Introduces spectrum capacity between the U.S. and Brazil
- Continues evolving a rational network infrastructure, using both spectrum and leased capacity

AmLight-ExP - Today

- 100G Miami-São Paulo, Atlantic
- 100G Miami-São Paulo, Pacific
- 4x10G links, landings in São Paulo, Fortaleza, Santiago
- 240G of aggregate bandwidth capacity
- 100G ring to include Santiago and Fortaleza in November 2016

AmLight SDN Launch – 2 years ago

6

Key motivations to move to SDN

1. Improving operations efficiency

- How to handoff to the user the layer 2 provisioning inside AmLight?
- How to improve layer 2 multi-domain provisioning?
 - IDCP/OSCARS, NSI/OpenNSA

2. Introducing network programmability

- How to support network testbeds managing the network infrastructure in a secure way?
- How to add and evaluate new control planes in parallel?

Direct Achievements from the SDN deployment

1 - Improving operations efficiency:

	Average time to provision a new circuit		Avg. number of e-	
			mails exchanged	
Domains involved in the path	before SDN	after SDN	before SDN	after SDN
RNP, ANSP, RedCLARA, AmLight, Internet2, ESnet	5 days	< 5 minutes	10	0
Other domains using OSCARS or NSI support	12 days	< 5 minutes	65	0

Julio Ibarra, Jeronimo Bezerra, Heidi Alvarez, Donald A. Cox, III, Michael Stanton, Iara Machado, and Eduardo Grizendi: "Benefits brought by the use of OpenFlow/SDN in the AmLight intercontinental research and education network", IM 2015 - 14th IFIP/IEEE Symposium on Integrated Network and Service Management, Ottawa, Canada, 11-15 May, 2015

Direct Achievements from the SDN deployment

2. Introducing network programmability:

	Network Access and Programmability		
	Before SDN	After SDN	
Network View	SNMP	SNMP and Openflow	
Provisioning Defined by			
the User	-	Full Openflow access through a dedicated slice	
Multipath experiments	Static paths offered		
Flow controlled hop-by-			
hop	-		

Lessons Learned

- 1. SDN and OpenFlow have the potential of helping in many ISP activities
 - Especially multi-domain provisioning
- 2. Caution before deploying SDN applications into production
 - Gaps in troubleshooting, implementation of OpenFlow protocol, etc.
 - Many opportunities to those interested in new technologies
 - Most of the OpenFlow switches tested had immature code
 - Many features missing, poor code development, lack of tests before releasing code, etc.

Lessons Learned [2]

- 1. Troubleshooting is very time-consuming and frustrating
 - In most of the cases, vendors lacked proper tools for troubleshooting
 - New tools are needed urgently
- 2. Immature OpenFlow code = risks to production network services
 - Devices crashed due to unsupported OpenFlow messages
 - Validating OpenFlow software is very important
- 3. Slicing proved to be very useful for testing different control planes
 - Useful in revealing potential risks before deploying into production
 - Encourage researchers to use slicing as a testing methodology

Change of Culture @ AmLight

- From Network Engineering to SDN/Research Engineering?
 - Agile/SCRUM, Python, Java, *unittest* are part of daily discussions of the network engineering group
- Training on Software Development (programming languages, processes, etc.)
 - Python for Network Engineers was just the beginning
- Strong focus on software instead of hardware
 - Team was trained to follow the Agile/Scrum methodology
 - AmLight started to collaborate with the ONOS development (ONOS Brigade)

Network Engineer 2.0 (?)

- Main challenge was (and still is):
 - How to convince some network engineers (not managers!) that SDN "might" be useful
 - It is difficult to learn a new paradigm
- Once convinced, training, training, training!
 - Going back to school was pretty hard for some of them
 - FIU has full access to Lynda.com easy access to great courses!
- Identity "crisis": what am I now: a network engineer, DevOps, SDN/Research engineer?
 - Maybe Network Engineer 2.0?
 - Recruiting Network Engineer 2.0 people is challenging

New opportunities for collaboration

- With the experience acquired from the SDN deployment, new projects were created:
 - IRNC AtlanticWave-SDX: development of an intercontinental multi-domain Software-Defined Exchange (SDX)
 - IRNC AmLight Express and Protect (AmLight-ExP): expand the current SDN deployment to manage both leased and optical networks
 - NSF REU, SwitchOn, LSST are projects that will leverage the SDN deployment
- Some partnerships have evolved to a whole new level:
 - FIU and ANSP have merged their IT teams to guarantee an unified approach to the U.S.-South America connectivity
 - AmLight and Open Laboratory: AmLight is engaging with ONOS development₁

Outreach

- Presentations: 41, from OpenFlow to optical and SDX
- Papers: 5, from experience to academic research (1 best experience paper award)
- Tools: 3, focused on troubleshooting
- Network testbeds: 6, including ONOS, FIBRE and demos
- More info: www.sdn.amlight.net

Tools Developed @ AmLight

- Three troubleshooting tools developed so far:
 - Testbed Sanitizer (presented at the 2015 GLIF Meeting)
 - Creates a security layer between the OpenFlow switch and OpenFlow applications
 - Filters improper OpenFlow messages sent to the switches
 - Proof of concept only
 - OpenFlow Sniffer (presented at the TechEx 2015)
 - Used to monitor the control plane communication between switches and OpenFlow applications
 - Helps to identify both sides of the communication when proxies/slicers are present
 - Available: http://github.com/amlight/ofp_sniffer

Tools Developed [2]

- SDNTrace (briefly mentioned at TechEx 2016)
 - Tool to help trace the data path in OpenFlow networks
 - Validates the data path
 - Useful when troubleshooting flow issues when the network has multiple flows and devices
 - Available: <u>http://github.com/amlight/sdntrace</u>
- OpenNSA (NSI Agent) backend to OESS
 - OpenNSA backend to send circuit creation requests to OESS
 - AMPATH has been using OpenNSA since 2014
 - one of the first IXP to support NSI in production (no side device)
 - Available: http://github.com/jab1982/opennsa

Goals for the future

- Install and manage Spectrum using SDN
 - Integrate packet and optical layers
- Deploy the SDX controller in production
 - Prototype will be available by the end of 2016
 - Demo of our SDX prototype tonight

Goals for the future

- Migrate to OpenFlow 1.3
 - Running some experiments with Corsa and other vendors
- New tools: SDN Looking Glass
 - Unified GUI interface to operate OpenFlow networks
 - Independent of slicers/virtualization: full network visualization
 - Statistics
 - Passive and Active tests
 - Real time monitoring
 - Independent of OpenFlow controller: Ryu, ODL and ONOS supported
 - ETD: February 2017

Conclusion

Deploying SDN pushed AmLight to reinvent itself

- We continue learning how to operate SDN in a production environment
- In some cases, CAPEX increased, while OPEX kept the same or decreased
- Troubleshooting is still complex and time-consuming, but it is part of the game

Facilitating development of SDN applications

- Validation methodology for the controller
- Bring us your Testbeds

• After two years, we consider the investment in SDN a success

Looking forward to enhance collaboration with other R&E networks

Thank You!

- NSF OpenWave, AmLight, OSDC-PIRE, CC-NIE, CC*IIE, AMPATH, AtlanticWave infrastructure, science application support, education, outreach and community building efforts are made possible by funding and support from:
 - National Science Foundation (NSF) awards ACI-1451018, ACI-1451024, ACI-1440728, ACI-0963053, ACI-1140833, ACI-1246185, ACI-1341895
 - FAPESP, ANSP grant no. 2008/52885-8
 - Rede Nacional de Ensino e Pesquisa (RNP)
 - CLARA
 - Association of Universities for Research in Astronomy (AURA)
 - Florida International University
 - Internet2 and GRNOC
 - Latin American Research and Education community
 - The many national and international collaborators who support our efforts

2016 GLIF Meeting Miami, Sep 29th 2016

AmLight backbone transition to SDN: Celebrating the second anniversary

Julio Ibarra Florida International University <julio@fiu.edu>

