AmLight’s OpenFlow Sniffer dissected: Troubleshooting
production networks

Jeronimo Bezerra', Humberto Galiza?, Julio Ibarra', Marcos Schwarz?

'Florida International University (FIU)
Miami — FL — USA

?Rede Nacional de Ensino e Pesquisa (RNP)
Campinas — SP — Brazil

{jbezerra, julio}@fiu.edu, {humberto.galiza,marcos.schwarz}@rnp.br

Abstract. AmLight network was migrated to an OpenFlow approach in mid-
2014. Since its migration, AmLight hosted a few network testbeds, where each
testbed presented different challenges to the network operation. As OpenFlow
agents are new codes on the network devices, some flaws and crashes are ex-
pected. However, as AmLight is a production network, outages have to be
handled right away. This paper will present AmLight’s OpenFlow Sniffer, an
open source tool to be used for troubleshooting and learning purposes. Using
the OpenFlow Sniffer improved the overall troubleshooting process on AmLight
SDN’s network.

1. Introduction

In OpenFlow-based environments, due to the lack of troubleshooting protocols and tools,
packet inspection is frequently used. Packet inspection allows the network engineer to
understand what types of OpenFlow [ONF 2009] message are being exchanged.

With the OpenFlow deployment at AmLight [Ibarra et al. 2015], the lack of trou-
bleshooting tools became explicit. Today, the main challenge is to define what approach to
use to mitigate any network outage. To handle its operation, AmLight has been developing
tools focused on troubleshooting. The OpenFlow Sniffer was developed to troubleshoot
OpenFlow messages exchanged between controllers and OpenFlow devices.

This paper is organized as follows: Section [2] will present AmLight’s OpenFlow
Sniffer. Section [3] will detail the challenges when supporting testbeds and how the Am-
Light’s OpenFlow Sniffer was enhanced to handle these challenges. Section 4{ will con-
clude this paper and Section [5] will detail future work.

2. The AmLight’s OpenFlow Sniffer

The OpenFlow Sniffer development at AmLight started as a result of none of the tra-
ditional tools available sufficiently support the OpenFlow 1.0 specification. Wireshark
tool [[Combs et al. 2016], for instance, dissects only 50% of the OpenFlow 1.0 specifi-
cation, despite of it can dissect 100% of OpenFlow 1.3 [Wireshark 2016]]. Furthermore,
some packet inspection tools require graphical interfaces, or the captured file has to be
moved to another computer to be visualized. In network environments where application
servers have no support for graphical user interfaces, or where firewalls sit between users

[= K I SO VORI SR

and servers, using traditional troubleshooting tools might not be the most effective way
of troubleshooting. Additionally to Wireshark, [Wundsam et al. 2011] introduced the
OFRewind, a tool to help troubleshooting the Stanford University’s OpenFlow network,
but it was never released as a production tool.

To help the troubleshooting process at AmLight, the OpenFlow Sniffer was de-
veloped, with the following objectives: (1) it had to be fully OpenFlow 1.0 compliant;
(2) it had to support filters per OpenFlow message type; (3) it had to be text-based and
(4) it had to be useful for OpenFlow troubleshooting. All four objectives were part of
the version 0.2, released in December 2015. Written in Python 2, with Apache License
and available on GitHub [Bezerra 20135]], version 0.2 allows the network engineer to read
from Libpcap files and network interfaces, without affecting the production traffic, be-
cause it is entirely passive. One of the important achievements of the OpenFlow Sniffer is
that it colors the most relevant fields of each OpenFlow message. These OpenFlow fields
were selected to be highlighted based on the experience from previous troubleshooting
processes. The following output shows an OpenFlow OFPT_FLOW _MOD message with
some key OpenFlow fields highlighted.

2016-01-22 16:42:52 OF_Controller:6633 -> OF_Switch:32975 Size: 146 Bytes
OpenFlow Version: 1.0(1l) Type: FlowMod(14) Length: 80 XID: 20
OpenFlow Match - wildcards: 3276782 dl_type: 0x800 nw_dst: 10.10.11.0/25 in_port: 53
OpenFlow Body - Cookie: 0x00 Command: Add(0) Idle/Hard Timeouts: 0/0

Priority: 32768 Buffer ID: Oxffffffff Out Port: 65535 Flags: SendFlowRem (1)
OpenFlow Action - Type: OUTPUT Length: 8 Port: 8 Max Length: O

Next section will describe how the OpenFlow Sniffer was enhanced to trou-
bleshooting environments that add a virtualization layer.

3. Handling a Virtualization Layer

Some OpenFlow-based networks, such as AmlLight, have support for network
slices [Sherwood et al. 2009], where a virtualization layer sits between controllers and
switches, which increases the troubleshooting complexity. Slicing or Network Virtualiza-
tion allows multiple controllers to share the same physical infrastructure.

Slicing was achieved at the AmLight

e network using Internet2’s Flow Space Firewall

éz (FSFW) [GRNOC 2016] - an OpenFlow proxy that
€12°) rsow [sov [sow) [sow controls what OpenFlow controllers can do to the
%) m m m m OpenFlow devices. To enable slicing, all OpenFlow
£33 | ‘ devices must be configured to have the FSFW as
Ollge FlowSpace Firewall X

g8 L—— — its OpenFlow controller. Once an OpenFlow con-
B u nection is initiated by the OpenFlow device, FSFW
(ol] @ S S @ S checks which slices have the new connected Open-
: % Lo ... Flow device included in its configuration. Each
E £ ._o N N ;,., slice has a manually inserted OpenFlow controller

entry associated with it; a connection between the
FSFW and the controller is then established. If
more than one slice has the OpenFlow device in
its configuration, more OpenFlow sessions are ini-

Figure 1. AmLight SDN
stack

tiated by the FSFW.

Having a TCP/OpenFlow session per-device per-controller makes it easier to man-
age slices, especially because OpenFlow messages do not have any field that identifies
the target device once the OpenFlow session is established. The OpenFlow controller
knows which switch is associated with the TCP session through the OpenFlow message
OFPT_FEATURES _REPLY, used in the moment the session is established, which has the
Datapath ID (DPID). The Datapath ID uniquely represents a single OpenFlow device.

Figure|l|represents the current SDN stack at AmLight after deploying OpenFlow
1.0, Flow Space Firewall and SDN applications. In the SDN stack, FSFW acts as a proxy
between the physical layer and the control layer, represented by SDN applications. With
FSFW, the OpenFlow communication does not happen between controllers and OpenFlow
devices directly anymore. The OpenFlow Sniffer was extended to handle this peculiar
situation created by OpenFlow proxies.

Figure [2] represents the process de-
veloped for the OpenFlow Sniffer to make e ~
. . | OpenFlow Message
the association between the IP and TCP _ Received
| ~ Y (8)

ports in use by FSFW and the Open- oT—

Flow devices: (1) The OpenFlow Snif- </(a_ PacketOut™_ | | [P sourceTCP ||| pdd o the
fer collects an IP packet from a file or L Lo P Dictionary
from a network interface; (2) Once the IP '

packet is dissected, the OpenFlow Snif-
fer checks if the OpenFlow message is
an OFPT_PACKET_OUT message and if T e—r
it carries Link Layer Discovery Proto- (4 and TCP Portis n nt:;
col (LLDP) [IEEE 2004]] data; (3) If the : I :

No

@) 7 Parse OpenFlow 7
Packet

e

packet is not an OFPT_PACKET_OUT <ﬂ,und§/\ No
message or it does not carry LLDP data, ~

Yes

the packet is parsed and (4) the associa- S - -
tion dictionary is checked. If the source l/ P gj;;k:;,;“ﬁ (SJV-/SDZL‘;;;ZCQEJg“;te"::l},h
IP and source TCP port were inserted be- \ device'sname_/ N devie

fore, (5) the packet is printed with the
device identification; (6) otherwise the
packet is printed without any OpenFlow
device identification; (7) If the packet is an
OFPT_PACKET_OUT message and it carriers LLDP data, the DPID is collected. From
the same IP packet, the source IP and TCP port are collected and all three are inserted
in a DPID dictionary. (8) This DPID dictionary is then merged with a name dictionary
created by the network admin, having the DPID and the name of the switch. In the end,
an association dictionary is created having the device’s name, source IP and source port.
From now on, all packets will be checked against the association dictionary.

Figure 2. OpenFlow Sniffer process
to discover the OpenFlow device

With this extension, network engineers will quickly identify the OpenFlow de-
vice associated to the OpenFlow message received or sent, especially in cases of
OFPT_ERROR messages. As it was described, the OpenFlow Sniffer is completely pas-
sive, it does not get involved in the OpenFlow connection. With this approach, its instal-
lation brings minimum risks and complexity to the OpenFlow controller’s environment.

4. Conclusion

The OpenFlow Sniffer provided troubleshooting visibility to AmLight’s network opera-
tion. Real-time and historical information are available when debugging. Communica-
tion with vendors already occurs using output collected from the OpenFlow Sniffer. The
skills acquired in its development, as well as the developed features are also helping the
AmLight network team to validate the OpenFlow implementation of different network
devices available on the market.

5. Future Work

AmLight’s OpenFlow Sniffer version 0.3 is planned to be released in mid-2016. Version
0.3 will be entirely rewritten to add support for OpenFlow 1.3, for new filters, includ-
ing OFPT_PACKET _OUT and LLDP. Version 0.4 has in its roadmap to add support for
OpenVSwitch specification and SSL dissection.

References

[Bezerra 2015] Bezerra, J. (2015). Openflow protocol sniffer. Available online:
https://goo.gl/402xpp.

[Combs et al. 2016] Combs, G. et al. (2016). Wireshark. Online website:
http://www.wireshark.org.

[GRNOC 2016] GRNOC (2016). Flowspace firewall. Online website:
http://globalnoc.iu.edu/sdn/fsfw.html.

[Ibarra et al. 2015] Ibarra, J., Bezerra, J., Morgan, H., Fernandez Lopez, L., Stanton, M.,
Machado, 1., Grizendi, E., and Cox, D. A. (2015). Benefits brought by the use of
openflow/sdn on the amlight intercontinental research and education network. pages
942-947.

[IEEE 2004] IEEE (2004). 802.1ab standard: Station and media access control connectivity
discovery. Available online: http://www.ieee802.0rg/1/pages/802.1ab.html.

[ONF 2009] ONF, O. N. E. (2009). Openflow switch specification 1.0.0 (wire proto-
col 0x01). Online website: http://archive.openflow.org/documents/openflow-spec-
v1.0.0.pdf.

[Sherwood et al. 2009] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M.,
McKeown, N., and Parulkar, G. (2009). Flowvisor: A network virtualization layer.
OpenFlow Switch Consortium, Tech. Rep, pages 1-13.

[Wireshark 2016] Wireshark (2016). Openflow support on wireshark. Online website:
https://wiki.wireshark.org/OpenFlow.

[Wundsam et al. 2011] Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A., et al.
(2011). Ofrewind: Enabling record and replay troubleshooting for networks. In
USENIX Annual Technical Conference.

	Introduction
	The AmLight's OpenFlow Sniffer
	Handling a Virtualization Layer
	Conclusion
	Future Work

