FIU

Leveraging In-band Network Telemetry for Automated DDoS Detection in Production Programmable Networks: The AmLight Use Case

Hadi Sahin, Jeronimo Bezerra, Italo Brito, Renata Frez, Vasilka

Chergarova, Luis Fernandez Lopez, Julio Ibarra

November 11, 2024

Center for Internet Augu Research & Assessmen

FLORIDA INTERNATIONAL UNIVERSITY **Division of Information Technology**

►[Introductio](#page-1-0)n

-
-
-

- In-band Network Telemetry (INT) has been available since 2015, providing rich network state information.
- While INT holds promise for enhanced network monitoring and security applications, research and practical deployments of INT for Distributed Denial of Service (DDoS) threat detection remain limited:
	- Existing studies primarily rely on data generated from simulation environments (e.g., Mininet), lacking real-world validation.
	- There is a lack of comparative analysis among different network monitoring tools, such as the performance and accuracy of INT-based approaches versus traditional sFlow-based monitoring.

In this work, we leverage the In-band Network Telemetry (INT) technology implemented in the AmLight network to enhance Distributed Denial of Service (DDoS) attack detection:

- Utilize real-world production INT data to detect and characterize DDoS attacks.
- Compare the DDoS attack predictions from INT-based analysis with those from traditional sFlow-based monitoring.
- Propose an automated, machine learning-driven approach for robust and accurate DDoS attack detection.

Table of Contents FIU Background and Related Work

- ► Background and Related Work
-
-

In-band Network Telemetry (INT) and sFlow FIU Background and Related Work

- INT technology combines data packet forwarding with network measurement.
- It embeds telemetry information into packets as they traverse the network
- sFlow captures and samples packets across network devices.
- The sFlow agent collects data from switches and routers, and the sFlow collector processes this data.

-
- ►Proposed [Mechanism](#page-6-0)
-

Automated DDoS Detection FIU Proposed Mechanism

- 1. Gather INTdata.
- 2. Send INT data to the *Data processor*:
	- Flow ID: src/dst IP, src/dst ports, protocol.
	- Flow-levelfeatures (e.g., *Packets per second*, *Flows per second*).
- 3. Save processed data to the database.
- 4. Retrieve processed data.
- 5. Send data to the prediction model.
- 6. Receive predictions.
- 7. Sendpredictions to the *Data processor* for aggregation.

-
-
- ►[Experimental](#page-8-0) Evaluation

True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN):

$$
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
$$
\n
$$
Recall = \frac{TP}{TP + FN}
$$
\n
$$
Precision = \frac{TP}{TP + FP}
$$
\n
$$
F1\text{-score} = 2 \times \frac{Precision \times Recall}{Precision + Recall}
$$

Confusion matrix: a 2 \times 2 table of actual and predicted Positives (P) and Negatives (N)

- Data were collected from a subnet of a AmLight network from June 6 to June 11, 2024
- We also simulated various attack types

- \bullet * Indudes packet-level, cumulative, average, and standard deviation of the variables.
- \bullet The cumulative inter-arrival time denotes flow duration.

We employ the following machine learning (ML) models for DDoS attack detection:

- Random Forest (RF)
- K-Nearest Neighbors (KNN)
- Gaussian Naive Bayes (GNB)
- Neural Network (NN) with three hidden layers of 32, 16, and 8 neurons

To train the ML models, we use a 90:10 train-test split ratio, reserving 10% of the data for model evaluation.

DDoS Predictions Using INT vs sFlow Data FIU Experimental Evaluation

- We use data flows from June 11, 2024 as the test set to evaluate the models.
- Weconsider the*SlowLoris* attack as a zero-day scenario, where the models have not been trained on this specific attack type.

- sFlow may not capture all attack flows due to sampling limitations.
- As a result, predictions using sFlow data could miss certain threats.

Top Five Most Important Features FIU Experimental Evaluation

- The most important features for detecting DDoS attacks are: *Inter-Arrival Time*, *Packet Size*, *Queue Occupancy*, and*Protocol*.
- The variants of these features, such as individual values, cumulative statistics, averages, or standard deviations, can differ in importance across the ML models.

- • The source and target servers powered by dual AMD EPYC 7451 24-core processors and 128GB of RAM. Each server utilizes a Mellanox ConnectX-5 network card capable of 100Gbps throughput.
- The switch is an Edgecore Wedge DCS800
- *tcpreplay -i* 〈*interface*〉*-p* 〈*number of packets*〉〈*pcap file path*〉

Experimental Results II FIQ) Experimental Evaluation

- We achieved over 97% accuracy in predicting most attack types, with an average response time of under 2 seconds.
- The creation of new flows appears to introduce bottlenecks and increase prediction time.

• Misclassifications occur in the initial instances of a new flow.

-
-
-

►[Conclusio](#page-19-0)n

- INT data proved effective in detecting DDoS attacks for both known and novel attack patterns.
- sFlow performs similarly but may miss data due to its sampling approach.
- Automated detection, addressing bottlenecks, can be achieved in under 2 seconds.
- Efficiently storing, processing, and analyzing INT data requires substantial computational resources and optimized techniques.
- Establishing precise timestamps remains challenging.
- With our network capacity of 100 Gbps, the simulated attack did not cause significant congestion, limiting our ability to observe the effects on *queue occupancy*.

Thank you for your attention. Questions are welcome.